

Maria Evelina Rossi

Department of Mathematics, University of Genoa, Italy

THE DUAL MODULE OF GORENSTEIN k-ALGEBRAS

38th Symposium on Commutative Algebra in Japan 9th Japan-Vietnam Joint Seminar on Commutative Algebra

MAIN GOAL

We will survey some recent results on:

an extension of Macaulay's Inverse System theorem to Gorenstein *d*-dimensional *k*-algebras

The results are obtained jointly with J. Elias

MAIN GOAL

We will survey some recent results on:

an extension of Macaulay's Inverse System theorem to Gorenstein *d*-dimensional *k*-algebras

The results are obtained jointly with J. Elias

MAIN GOAL

We will survey some recent results on:

an extension of Macaulay's Inverse System theorem to Gorenstein *d*-dimensional *k*-algebras

The results are obtained jointly with J. Elias

$$R = S/I$$

The codimension of R (of I) is defined by

$$codim(R) = dimS - dimR = n - dimR$$

c.i.
$$\Longrightarrow$$
 Gorenstein

Consider

$$R = S/I$$

The codimension of R (of I) is defined by

$$codim(R) = dimS - dimR = n - dimR$$

c.i.
$$\Longrightarrow$$
 Gorenstein

$$R = S/I$$

The codimension of R (of I) is defined by

$$codim(R) = dimS - dimR = n - dimR$$

R is said a complete intersection (c.i.) if I can be generated by codim(R) elements.

c.i. \Longrightarrow Gorenstein

$$R = S/I$$

The codimension of R (of I) is defined by

$$codim(R) = dimS - dimR = n - dimR$$

$$R = S/I$$

The codimension of R (of I) is defined by

$$codim(R) = dimS - dimR = n - dimR$$

$$R = S/I$$

The codimension of R (of I) is defined by

$$codim(R) = dimS - dimR = n - dimR$$

Definition. R is Gorenstein if R is Cohen-Macaulay and its dualizing module (or canonical module) $Ext_S^{n-d}(R,S)$ is free (of rank 1) where d = dimR.

In terms of free resolutions

Proposition. Let $0 \to F_c \to F_{c-1} \to \cdots \to F_0 \to R \to 0$ a minimal free S-resolution of R. Then

R is Gorenstein \iff c = codim(R) and $F_c \simeq S$

Codim(R) = 2 $0 \rightarrow S \rightarrow S^2 \rightarrow S \rightarrow R \rightarrow 0$

Gorenstein ←⇒ c.i.

Definition. R is Gorenstein if R is Cohen-Macaulay and its dualizing module (or canonical module) $Ext_S^{n-d}(R,S)$ is free (of rank 1) where d = dimR.

In terms of free resolutions

Proposition. Let
$$0 \to F_c \to F_{c-1} \to \cdots \to F_0 \to R \to 0$$

a minimal free S-resolution of R. Then

R is Gorenstein \iff c = codim(R) and $F_c \simeq S$

$$Codim(R) = 2$$
 $0 \to S \to S^2 \to S \to R \to 0$

Gorenstein ← c.i.

Definition. R is Gorenstein if R is Cohen-Macaulay and its dualizing module (or canonical module) $Ext_S^{n-d}(R,S)$ is free (of rank 1) where d=dimR.

In terms of free resolutions

Proposition. Let
$$0 \to F_c \to F_{c-1} \to \cdots \to F_0 \to R \to 0$$
 a minimal free S-resolution of R. Then

R is Gorenstein
$$\iff$$
 $c = codim(R)$ and $F_c \simeq S$

$$\operatorname{\textit{Codim}}(R) = 2 \quad 0 \to S \to S^2 \to S \to R \to 0$$

Gorenstein ⇔ ci

Definition. R is Gorenstein if R is Cohen-Macaulay and its dualizing module (or canonical module) $Ext_S^{n-d}(R,S)$ is free (of rank 1) where d=dimR.

In terms of free resolutions

Proposition. Let
$$0 \to F_c \to F_{c-1} \to \cdots \to F_0 \to R \to 0$$
 a minimal free S-resolution of R . Then

R is Gorenstein
$$\iff$$
 $c = codim(R)$ and $F_c \simeq S$

$$Codim(R) = 2$$
 $0 \rightarrow S \rightarrow S^2 \rightarrow S \rightarrow R \rightarrow 0$
Gorenstein \iff c.i

Definition. R is Gorenstein if R is Cohen-Macaulay and its dualizing module (or canonical module) $Ext_S^{n-d}(R,S)$ is free (of rank 1) where d=dimR.

In terms of free resolutions

Proposition. Let
$$0 \to F_c \to F_{c-1} \to \cdots \to F_0 \to R \to 0$$
 a minimal free S-resolution of R . Then

R is Gorenstein
$$\iff$$
 $c = codim(R)$ and $F_c \simeq S$

$$Codim(R) = 2 \qquad 0 \to S \to S^2 \to S \to R \to 0$$

Definition. R is Gorenstein if R is Cohen-Macaulay and its dualizing module (or canonical module) $Ext_S^{n-d}(R,S)$ is free (of rank 1) where d=dimR.

In terms of free resolutions

Proposition. Let
$$0 \to F_c \to F_{c-1} \to \cdots \to F_0 \to R \to 0$$
 a minimal free S-resolution of R . Then

R is Gorenstein
$$\iff$$
 $c = codim(R)$ and $F_c \simeq S$

$$Codim(R) = 2 \qquad 0 \to S \to S^2 \to S \to R \to 0$$
Gorenstein \iff c.i.

Theorem. [Buchsbaum-Eisenbud] codim(R) = 3

R is Gorenstein \iff *I* is generated by 2*m*-order Pfaffians of a skew-symmetric (2m+1) alternating matrix *A*.

In this case a minimal free resolution of R over S has the form

$$0 \to S \to S^{2m+1} \ \stackrel{\rightarrow}{\to} \ S^{2m+1} \to S \to R \to 0$$

A. Kustin, M. Reid studied the projective resolution of Gorenstein ideals of codimension 4, aiming to extend the previous famous theorem by Buchsbaum and Eisenbud.

To date a geometric or an algebraic description of Gorenstein rings of any dimension and codimension is not understood.

Theorem. [Buchsbaum-Eisenbud] codim(R) = 3

R is Gorenstein \iff *I* is generated by 2*m*-order Pfaffians of a skew-symmetric (2m+1) alternating matrix *A*.

In this case a minimal free resolution of R over S has the form

$$0 \to S \to S^{2m+1} \xrightarrow{A} S^{2m+1} \to S \to R \to 0$$

A. Kustin, M. Reid studied the projective resolution of Gorenstein ideals of codimension 4, aiming to extend the previous famous theorem by Buchsbaum and Eisenbud.

To date a geometric or an algebraic description of Gorenstein rings of any dimension and codimension is not understood.

Theorem. [Buchsbaum-Eisenbud] codim(R) = 3

R is Gorenstein \iff *I* is generated by 2*m*-order Pfaffians of a skew-symmetric (2m+1) alternating matrix *A*.

In this case a minimal free resolution of R over S has the form

$$0 \to S \to S^{2m+1} \xrightarrow{A} S^{2m+1} \to S \to R \to 0$$

A. Kustin, M. Reid studied the projective resolution of Gorenstein ideals of codimension 4, aiming to extend the previous famous theorem by Buchsbaum and Eisenbud.

To date a geometric or an algebraic description of Gorenstein rings of any dimension and codimension is not understood.

Let $S = k[[x_1, \ldots, x_n]]$ (or $k[x_1, \ldots, x_n]$) and let $E_S(k)$ the injective hull of k as R-module. Gabriel (58) observed that an injective hull of $k = S/(x_1, \ldots, x_n)$

$$E_S(k) \simeq D_{\cdot}^k(S_1) \simeq k[X_1, \dots, X_n] := D$$

a divided power ring

D is a S-module by a contraction action

$$x_i \circ X^{[a]} = x_i \circ (X_1^{a_1} \cdots X_n^{a_n}) = X_1^{a_1} \cdots X_i^{a_i-1} \cdots X_n^{a_n}$$

Let $S = k[[x_1, \ldots, x_n]]$ (or $k[x_1, \ldots, x_n]$) and let $E_S(k)$ the injective hull of k as R-module. Gabriel (58) observed that an injective hull of $k = S/(x_1, \ldots, x_n)$

$$E_S(k) \simeq D_{\cdot}^k(S_1) \simeq k[X_1, \dots, X_n] := D$$

a divided power ring

D is a S-module by a contraction action

$$X_i\circ X^{[a]}=X_i\circ (X_1^{a_1}\cdots X_n^{a_n})=X_1^{a_1}\cdots X_i^{a_i-1}\cdots X_n^{a_n}$$

Let $S = k[[x_1, ..., x_n]]$ (or $k[x_1, ..., x_n]$) and let $E_S(k)$ the injective hull of k as R-module. Gabriel (58) observed that an injective hull of $k = S/(x_1, ..., x_n)$

$$E_S(k) \simeq D_{\cdot}^k(S_1) \simeq k[X_1, \ldots, X_n] := D$$

a divided power ring.

D is a S-module by a contraction action

$$x_i \circ X^{[a]} = x_i \circ (X_1^{a_1} \cdots X_n^{a_n}) = X_1^{a_1} \cdots X_i^{a_i-1} \cdots X_n^{a_n}$$

Let $S = k[[x_1, ..., x_n]]$ (or $k[x_1, ..., x_n]$) and let $E_S(k)$ the injective hull of k as R-module. Gabriel (58) observed that an injective hull of $k = S/(x_1, ..., x_n)$

$$E_S(k) \simeq D^k(S_1) \simeq k[X_1, \ldots, X_n] := D$$

a divided power ring.

D is a S-module by a contraction action:

$$x_i \circ X^{[a]} = x_i \circ (X_1^{a_1} \cdots X_n^{a_n}) = X_1^{a_1} \cdots X_i^{a_i-1} \cdots X_n^{a_n}$$

Let $S = k[[x_1, \ldots, x_n]]$ (or $k[x_1, \ldots, x_n]$) and let $E_S(k)$ the injective hull of k as R-module. Gabriel (58) observed that an injective hull of $k = S/(x_1, \ldots, x_n)$

$$E_S(k) \simeq D^k(S_1) \simeq k[X_1, \ldots, X_n] := D$$

a divided power ring.

D is a S-module by a contraction action:

$$x_i \circ X^{[a]} = x_i \circ (X_1^{a_1} \cdots X_n^{a_n}) = X_1^{a_1} \cdots X_i^{a_i-1} \cdots X_n^{a_n}$$

Let $S = k[[x_1, \ldots, x_n]]$ (or $k[x_1, \ldots, x_n]$) and let $E_S(k)$ the injective hull of k as R-module. Gabriel (58) observed that an injective hull of $k = S/(x_1, \ldots, x_n)$

$$E_S(k) \simeq D_{\cdot}^k(S_1) \simeq k[X_1, \ldots, X_n] := D$$

a divided power ring.

D is a S-module by a contraction action:

$$x_i \circ X^{[a]} = x_i \circ (X_1^{a_1} \cdots X_n^{a_n}) = X_1^{a_1} \cdots X_i^{a_i-1} \cdots X_n^{a_n}$$

Example:

$$x_1 \circ X_1^2 X_2 = X_1 X_2$$

 $x_1 \circ X_2^2 = 0$

If we assume char(k) = 0, then

$$(D,\circ) \simeq (k[X_1,\ldots,X_n],\partial)$$

 $X^{[a]} \longrightarrow \frac{X^{[a]}}{a!}$

where $a! = \prod (a_i!)$ and ∂ is the usual partial derivative (with coefficients).

Example:

$$x_1 \circ X_1^2 X_2 = X_1 X_2$$

 $x_1 \circ X_2^2 = 0$

If we assume char(k) = 0, then

$$(D, \circ) \simeq (k[X_1, \dots, X_n], \partial)$$

 $X^{[a]} \longrightarrow \frac{X^{[a]}}{a!}$

where $a! = \prod (a_i!)$ and ∂ is the usual partial derivative (with coefficients).

We denote

$$\cdot^{\vee} = Hom_{\mathcal{S}}(\cdot, D)$$

the exact functor in the category of the S-modules. Matlis ('58) showed that the functor \lor defines an equivalence between

 $\{\mathsf{Artinian}\ {\mathcal{S}} ext{-}\mathsf{modules}\} \longrightarrow \{\mathsf{Noetherian}\ {\mathcal{S}} ext{-}\mathsf{modules}\ \}$

$$S/I \longrightarrow (S/I)^{\vee} := I^{\perp} = \langle \{g(X) \in D \mid I \circ g(X) = 0\} \rangle$$

We denote

$$\cdot^{\vee} = Hom_{\mathcal{S}}(\cdot, D)$$

the exact functor in the category of the S-modules. Matlis ('58) showed that the functor \lor defines an equivalence between

 $\{Artinian S-modules\} \longrightarrow \{Noetherian S-modules\}$

$$S/I \longrightarrow (S/I)^{\vee} := I^{\perp} = \langle \{g(X) \in D \mid I \circ g(X) = 0\} \rangle$$

We denote

$$\cdot^{\vee} = Hom_{\mathcal{S}}(\cdot, D)$$

the exact functor in the category of the S-modules. Matlis ('58) showed that the functor \lor defines an equivalence between

 $\{Artinian S-modules\} \longrightarrow \{Noetherian S-modules\}$

$$S/I \longrightarrow (S/I)^{\vee} := I^{\perp} = \langle \{g(X) \in D \mid I \circ g(X) = 0\} \rangle$$

Example : Let $I = (x^2, y^3) \subset S = k[[x, y]]$. Then I^{\perp} is a S-submodule of D = k[X, Y] and

$$I^{\perp} = <\{g \in D \mid x^2 \circ g = 0 \text{ and } y^3 \circ g = 0\}> =$$

If $I \subset S$ is an ideal (not necessarily 0-dimensional), then

$$(S/I)^{\vee} = Hom_S(R/I, D) \simeq I^{\perp} = <\{g(X) \in D \mid I \circ g(X) = 0\}>$$

a S-submodule of D and called Macaulay's inverse system of I.

$$I^{\perp}$$
 is finitely generated \iff S/I is 0-dimensional

Example : Let $I = (x^2, y^3) \subset S = k[[x, y]]$. Then I^{\perp} is a S-submodule of D = k[X, Y] and

$$I^{\perp} = \langle \{g \in D \mid x^2 \circ g = 0 \text{ and } y^3 \circ g = 0 \} \rangle = \langle XY^2 \rangle$$

If $I \subset S$ is an ideal (not necessarily 0-dimensional), then

$$(S/I)^{\vee} = Hom_S(R/I, D) \simeq I^{\perp} = <\{g(X) \in D \mid I \circ g(X) = 0\} >,$$

a S-submodule of D and called Macaulay's inverse system of I.

$$I^{\perp}$$
 is finitely generated \iff S/I is 0-dimensional // is 0-dimensional Gorenstein \iff I^{\perp} is cyclic.

Example : Let $I = (x^2, y^3) \subset S = k[[x, y]]$. Then I^{\perp} is a S-submodule of D = k[X, Y] and

$$I^{\perp} = \langle \{g \in D \mid x^2 \circ g = 0 \text{ and } y^3 \circ g = 0 \} \rangle = \langle XY^2 \rangle$$

If $I \subset S$ is an ideal (not necessarily 0-dimensional), then

$$(S/I)^{\vee} = Hom_S(R/I, D) \simeq I^{\perp} = <\{g(X) \in D \mid I \circ g(X) = 0\} >,$$

a S-submodule of D and called Macaulay's inverse system of I.

$$I^{\perp}$$
 is finitely generated \iff S/I is 0-dimensional

S/I is 0-dimensional Gorenstein $\iff I^{\perp}$ is cyclic

Example : Let
$$I = (x^2, y^3) \subset S = k[[x, y]]$$
. Then I^{\perp} is a S -submodule of $D = k[X, Y]$ and

$$I^{\perp} = \langle \{g \in D \mid x^2 \circ g = 0 \text{ and } y^3 \circ g = 0 \} \rangle = \langle XY^2 \rangle$$

If $I \subset S$ is an ideal (not necessarily 0-dimensional), then

$$(S/I)^{\vee} = Hom_S(R/I, D) \simeq I^{\perp} = <\{g(X) \in D \mid I \circ g(X) = 0\} >,$$

a S-submodule of D and called Macaulay's inverse system of I.

$$I^{\perp}$$
 is finitely generated \iff S/I is 0-dimensional

$$S/I$$
 is 0-dimensional Gorenstein $\iff I^{\perp}$ is cyclic.

Macaulay proved that there is the following 1-1 correspondence

$$\left\{\begin{array}{l} I\subseteq S \text{ ideal such that} \\ S/I \text{ is Artinian Gorenstein} \\ \text{with socledegree}(S/I)=s. \end{array}\right\} \quad \leftrightarrow \quad \left\{\begin{array}{l} M=S\circ F \\ S\text{-cyclic submodule of } D \\ \text{with degree } F=s \end{array}\right\}$$

Given a S-submodule M of D then

$$Ann_S(M) = \{ f(x) \in S \mid f(x) \circ M = 0 \}.$$

is an ideal of S

ARTINIAN Gorenstein k-algebras

Macaulay's Inverse System

Macaulay proved that there is the following 1-1 correspondence

$$\left\{\begin{array}{l} I\subseteq S \text{ ideal such that} \\ S/I \text{ is Artinian Gorenstein} \\ \text{with socledegree}(S/I)=s. \end{array}\right\} \quad \leftrightarrow \quad \left\{\begin{array}{l} M=S\circ F \\ S\text{-cyclic submodule of } D \\ \text{with degree } F=s \end{array}\right\}$$

Given a S-submodule M of D then

$$Ann_S(M) = \{ f(x) \in S \mid f(x) \circ M = 0 \}.$$

is an ideal of S.

$$I = AnnS(F) = (xy, x2 - y3)$$

and R = S/I is Gorenstein c.i.

$$e = \ell(S/I) = \dim_k \langle F \rangle = \dim_k \langle F, Y^2, X, Y, 1 \rangle = 5$$

$$HF_{S/I}(j) = \dim_k(I^{\perp})_j : h = (1, 2, 1, 1)$$

Example 2. Let $F = X^2 + Y^2 + Z^2 \in D = k[X, Y, Z]$ and let S = k[[x, y, z]]. Then

$$I = Ann_S(F) = (x^2 - y^2, y^2 - z^2, xy, xz, yz)$$

Then

$$I = Ann_S(F) = (xy, x^2 - y^3)$$

and R = S/I is Gorenstein c.i.

$$e = \ell(S/I) = \dim_k \langle F \rangle = \dim_k \langle F, Y^2, X, Y, 1 \rangle = 5$$

$$HF_{S/I}(j) = \dim_k(I^{\perp})_j : h = (1, 2, 1, 1)$$

Example 2. Let $F = X^2 + Y^2 + Z^2 \in D = k[X, Y, Z]$ and let S = k[[x, y, z]]. Then

$$I = Ann_S(F) = (x^2 - y^2, y^2 - z^2, xy, xz, yz)$$

$$I = Ann_S(F) = (xy, x^2 - y^3)$$

and R = S/I is Gorenstein c.i.

$$e = \ell(S/I) = \dim_k \langle F \rangle = \dim_k \langle F, Y^2, X, Y, 1 \rangle = 5.$$

$$HF_{S/I}(j) = \dim_k(I^{\perp})_j : h = (1, 2, 1, 1)$$

Example 2. Let $F = X^2 + Y^2 + Z^2 \in D = k[X, Y, Z]$ and let S = k[[x, y, z]]. Then

$$I = Ann_S(F) = (x^2 - y^2, y^2 - z^2, xy, xz, yz)$$

$$I = Ann_S(F) = (xy, x^2 - y^3)$$

and R = S/I is Gorenstein c.i.

$$e = \ell(S/I) = \dim_k \langle F \rangle = \dim_k \langle F, Y^2, X, Y, 1 \rangle = 5.$$

$$HF_{S/I}(j) = \dim_k(I^{\perp})_j : h = (1, 2, 1, 1)$$

Example 2. Let $F = X^2 + Y^2 + Z^2 \in D = k[X, Y, Z]$ and let S = k[[x, y, z]]. Then

$$I = Ann_S(F) = (x^2 - y^2, y^2 - z^2, xy, xz, yz)$$

$$I = Ann_S(F) = (xy, x^2 - y^3)$$

and R = S/I is Gorenstein c.i.

$$e = \ell(S/I) = \dim_k \langle F \rangle = \dim_k \langle F, Y^2, X, Y, 1 \rangle = 5.$$

$$HF_{S/I}(j) = \dim_k(I^{\perp})_j : h = (1, 2, 1, 1)$$

Example 2. Let $F = X^2 + Y^2 + Z^2 \in D = k[X, Y, Z]$ and let S = k[[x, y, z]]. Then

$$I = Ann_S(F) = (x^2 - y^2, y^2 - z^2, xy, xz, yz)$$

$$I = Ann_S(F) = (xy, x^2 - y^3)$$

and R = S/I is Gorenstein c.i.

$$e = \ell(S/I) = \dim_k \langle F \rangle = \dim_k \langle F, Y^2, X, Y, 1 \rangle = 5.$$

$$HF_{S/I}(j) = \dim_k(I^{\perp})_i : h = (1, 2, 1, 1)$$

Example 2. Let $F = X^2 + Y^2 + Z^2 \in D = k[X, Y, Z]$ and let S = k[[x, y, z]]. Then

$$I = Ann_S(F) = (x^2 - y^2, y^2 - z^2, xy, xz, yz)$$

$$I = Ann_S(F) = (xy, x^2 - y^3)$$

and R = S/I is Gorenstein c.i.

$$e = \ell(S/I) = \dim_k \langle F \rangle = \dim_k \langle F, Y^2, X, Y, 1 \rangle = 5.$$

$$HF_{S/I}(j) = \dim_k(I^{\perp})_j$$
: $h = (1, 2, 1, 1)$

Example 2. Let $F = X^2 + Y^2 + Z^2 \in D = k[X, Y, Z]$ and let S = k[[x, y, z]]. Then

$$I = Ann_S(F) = (x^2 - y^2, y^2 - z^2, xy, xz, yz)$$

$$I = Ann_S(F) = (xy, x^2 - y^3)$$

and R = S/I is Gorenstein c.i.

$$e = \ell(S/I) = \dim_k \langle F \rangle = \dim_k \langle F, Y^2, X, Y, 1 \rangle = 5.$$

$$HF_{S/I}(j) = \dim_k(I^{\perp})_i : h = (1, 2, 1, 1)$$

Example 2. Let $F = X^2 + Y^2 + Z^2 \in D = k[X, Y, Z]$ and let S = k[[x, y, z]]. Then

$$I = Ann_S(F) = (x^2 - y^2, y^2 - z^2, xy, xz, yz)$$

$$I = Ann_S(F) = (xy, x^2 - y^3)$$

and R = S/I is Gorenstein c.i.

$$e = \ell(S/I) = \dim_k \langle F \rangle = \dim_k \langle F, Y^2, X, Y, 1 \rangle = 5.$$

$$HF_{S/I}(j) = \dim_k(I^{\perp})_i : h = (1, 2, 1, 1)$$

Example 2. Let $F = X^2 + Y^2 + Z^2 \in D = k[X, Y, Z]$ and let S = k[[x, y, z]]. Then

$$I = Ann_S(F) = (x^2 - y^2, y^2 - z^2, xy, xz, yz)$$

Isomorphism classes of O-dimensional Gorenstein rings Macaulay Inverse System

We may translate in terms of F many properties of the corresponding Gorenstein ideal

For instance we translate in an effective framework the analytic isomorphisms of Gorenstein 0-dimensional k-algebras in terms of the dual module < F >

This topic plays an important role in studying the Hilbert scheme $Hilb_{\mathcal{F}}(P^*)$ parametrizing Gorenstein 0-dimensional subschemes of P^* and the rationality of the Poincaré series of k as R-module, see [Rmsalem], [Rmsalem],

We may translate in terms of F many properties of the corresponding Gorenstein ideal

For instance we translate in an effective framework the analytic isomorphisms of Gorenstein 0-dimensional k-algebras in terms of the dual module $\langle F \rangle$

This topic plays an important role in studying the Hilbert scheme $Hilb_{\theta}(P^n)$ parametrizing Gorenstein 0-dimensional subschemes of P^n and the rationality of the Poincaré series of k as R-module, see [Emsalem], [larrobino], [Poonen], [Erman], [Cartwright-Erman-Velasco-Viray], [-, Sega], ...

We may translate in terms of F many properties of the corresponding Gorenstein ideal

For instance we translate in an effective framework the analytic isomorphisms of Gorenstein 0-dimensional k-algebras in terms of the dual module < F >

This topic plays an important role in studying the Hilbert scheme $Hilb_d(P^n)$ parametrizing Gorenstein 0-dimensional subschemes of P^n and the rationality of the Poincaré series of k as R-module, see [Emsalem], [larrobino], [Poonen], [Erman], [Cartwright-Erman-Velasco-Viray], [-, Sega], ...

Isomorphism classes of 0-dimensional Gorenstein rings Macaulay Inverse System

We may translate in terms of F many properties of the corresponding Gorenstein ideal

For instance we translate in an effective framework the analytic isomorphisms of Gorenstein 0-dimensional k-algebras in terms of the dual module < F >

This topic plays an important role in studying the Hilbert scheme $Hilb_d(P^n)$ parametrizing Gorenstein 0-dimensional subschemes of P^n and the rationality of the Poincaré series of k as R-module, see [Emsalem], [Iarrobino], [Poonen], [Erman], [Cartwright-Erman-Velasco-Viray], [-, Şega], ...

Isomorphism classes of O-dimensional Gorenstein rings Macaulay Inverse System

- 1. A ≃ B
- 2. $\exists \phi \in Aut(S)$ such that $\phi(I) = J$
- 3. $\exists \phi \in Aut(S)$ such that $\phi^{\vee}(G) = u \circ F$ with $u \in S^*$
- $oldsymbol{\circ}$ 4. F and G lie in the same G-orbit of D where
 - $\mathbb{G} = Aut(S) \ltimes S^*$.

- 1. A ≃ B
- 2. $\exists \phi \in Aut(S)$ such that $\phi(I) = J$
- 3. $\exists \phi \in Aut(S)$ such that $\phi^{\vee}(G) = u \circ F$ with $u \in S^*$
- 4. F and G lie in the same G-orbit of D where
 - $\mathbb{G} = Aut(S) \ltimes S^*$.

- 1. *A* ≃ *B*
- 2. $\exists \phi \in Aut(S)$ such that $\phi(I) = J$
- 3. $\exists \phi \in Aut(S)$ such that $\phi^{\vee}(G) = u \circ F$ with $u \in S^*$
- \circ 4. F and G lie in the same G-orbit of D where
 - $G = Aut(S) \ltimes S^*$.

- 1. *A* ≃ *B*
- 2. $\exists \phi \in Aut(S)$ such that $\phi(I) = J$
- \circ 3. $\exists \phi \in Aut(S)$ such that $\phi^{\vee}(G) = u \circ F$ with $u \in S^*$
- 4. F and G lie in the same \mathbb{G} -orbit of D when $\mathbb{G} = Aut(S) \ltimes S^*$.

- 1. *A* ≃ *B*
- 2. $\exists \phi \in Aut(S)$ such that $\phi(I) = J$
- 3. $\exists \phi \in Aut(S)$ such that $\phi^{\vee}(G) = u \circ F$ with $u \in S^*$
- 4. F and G lie in the same \mathbb{G} -orbit of D where $\mathbb{G} = Aut(S) \ltimes S^*$.

- 1. *A* ≃ *B*
- 2. $\exists \phi \in Aut(S)$ such that $\phi(I) = J$
- 3. $\exists \phi \in Aut(S)$ such that $\phi^{\vee}(G) = u \circ F$ with $u \in S^*$
- 4. F and G lie in the same \mathbb{G} -orbit of D where $\mathbb{G} = Aut(S) \ltimes S^*$.

Characterize the S-submodules M of D (not finitely generated!) such that

 $S/Ann_{S}(M)$

is a d-dimensional Gorenstein ring (codimension n, multiplicity e,

Characterize the *S*-submodules *M* of *D* (*not finitely generated!*) such that

 $S/Ann_S(M)$

Characterize the *S*-submodules *M* of *D* (*not finitely generated!*) such that

 $S/Ann_S(M)$

Characterize the *S*-submodules *M* of *D* (*not finitely generated!*) such that

 $S/Ann_S(M)$

Characterize the *S*-submodules *M* of *D* (*not finitely generated!*) such that

 $S/Ann_S(M)$

In the Artinian case M is cyclic, in positive dimension further conditions will be required.

Notation:

$$L = (l_1, \dots, l_d) \in \mathbb{N}_+^d$$

$$\gamma_i = (0, \dots, 0, \frac{1}{i}, 0, \dots, 0)$$

$$L_i = (l_1, \dots, l_{i-1}, \frac{1}{i}, l_{i+1}, \dots, l_d)$$

Definition. Let d>0 and let $M\neq (0)$ be a S-submodule of the $D=E_S(k)$. We say that M is G_d -admissible, $1\leq d< n$, if it admits a system of generators $\{H_L\}_{L\in\mathbb{N}_+^d}$ in $D=k[Z_1,\ldots,Z_n]$ satisfying for every $L\in\mathbb{N}_+^d$ and $i=1,\ldots,d$ the following conditions:

$$\bullet \ \ 1. \ \ z_l \circ H_L = \left\{ \begin{array}{cc} H_{L=\gamma_l} & \ \ \text{if} \ \ L-\gamma_l > 0 \\ \\ 0 & \ \ \ \text{otherwise}. \end{array} \right.$$

 \bullet 2. $< H_1 > \cap k[Z_1, \ldots, X_n] \subset < H_1 > 0$

In the Artinian case M is cyclic, in positive dimension further conditions will be required.

Notation:

$$\begin{split} L &= (I_1, \dots, I_d) \in \mathbb{N}_+^d \\ \gamma_i &= (0, \dots, 0, 1, 0, \dots, 0) \\ L_i &= (I_1, \dots, I_{i-1}, 1, I_{i+1}, \dots, I_d) \end{split}$$

Definition. Let d>0 and let $M\neq (0)$ be a S-submodule of the $D=E_S(k)$. We say that M is G_d -admissible, $1\leq d< n$, if it admits a system of generators $\{H_L\}_{L\in\mathbb{N}_+^d}$ in $D=k[Z_1,\ldots,Z_n]$ satisfying for every $L\in\mathbb{N}_+^d$ and $i=1,\ldots,d$ the following conditions:

$$\bullet \ \ 1. \ z_i \circ H_L = \left\{ \begin{array}{ll} H_{L-\gamma_i} & \text{if } L-\gamma_i > \\ \\ 0 & \text{otherwise}. \end{array} \right.$$

 \bullet 2. $< H_1 > \cap k[Z_1, \ldots, \Lambda, \ldots, Z_n] \subset < H_1 >$

 G_d -admissible

In the Artinian case M is cyclic, in positive dimension further conditions will be required.

Notation:

$$\begin{split} L &= (l_1, \dots, l_d) \in \mathbb{N}_+^d \\ \gamma_i &= (0, \dots, 0, 1, 0, \dots, 0) \\ L_i &= (l_1, \dots, l_{i-1}, 1, l_{i+1}, \dots, l_d) \end{split}$$

Definition. Let d>0 and let $M\neq (0)$ be a S-submodule of the $D=E_S(k)$. We say that M is G_d -admissible, $1\leq d< n$, if it admits a system of generators $\{H_L\}_{L\in\mathbb{N}_+^d}$ in $D=k[Z_1,\ldots,Z_n]$ satisfying for every $L\in\mathbb{N}_+^d$ and $i=1,\ldots,d$ the following conditions:

• 1.
$$z_i \circ H_L = \left\{ egin{array}{ll} H_{L-\gamma_i} & ext{if } L-\gamma_i > 0 \\ 0 & ext{otherwise.} \end{array} \right.$$

• 2. $< H_L > \cap k[Z_1, \ldots, \wedge, \ldots, Z_n] \subseteq < H_{L_i} >$

In the Artinian case M is cyclic, in positive dimension further conditions will be required.

Notation:

$$L = (I_1, \dots, I_d) \in \mathbb{N}_+^d$$

$$\gamma_i = (0, \dots, 0, 1, 0, \dots, 0)$$

$$L_i = (I_1, \dots, I_{i-1}, 1, I_{i+1}, \dots, I_d)$$

Definition. Let d>0 and let $M\neq (0)$ be a S-submodule of the $D=E_S(k)$. We say that M is G_d -admissible, $1\leq d< n$, if it admits a system of generators $\{H_L\}_{L\in\mathbb{N}^d_+}$ in $D=k[Z_1,\ldots,Z_n]$ satisfying for every $L\in\mathbb{N}^d_+$ and $i=1,\ldots,d$ the following conditions:

$$\bullet \ \ 1. \ \ z_i \circ H_L = \left\{ \begin{array}{ll} H_{L-\gamma_i} & \ \ \text{if} \ \ L-\gamma_i > 0 \\ \\ 0 & \ \ \text{otherwise}. \end{array} \right.$$

 \bullet 2. $< H_L > \cap k[Z_1, \ldots, \land, \ldots, Z_n] \subseteq < H_{L_i} >$

 G_d -admissible

In the Artinian case M is cyclic, in positive dimension further conditions will be required.

Notation:

$$L = (I_1, \dots, I_d) \in \mathbb{N}_+^d$$

$$\gamma_i = (0, \dots, 0, 1, 0, \dots, 0)$$

$$L_i = (I_1, \dots, I_{i-1}, 1, I_{i+1}, \dots, I_d)$$

Definition. Let d>0 and let $M\neq (0)$ be a S-submodule of the $D=E_S(k)$. We say that M is G_d -admissible, $1\leq d< n$, if it admits a system of generators $\{H_L\}_{L\in\mathbb{N}_+^d}$ in $D=k[Z_1,\ldots,Z_n]$ satisfying for every $L\in\mathbb{N}_+^d$ and $i=1,\ldots,d$ the following conditions:

$$\quad \text{1.} \ \ z_i \circ H_L = \left\{ \begin{array}{ll} H_{L-\gamma_i} & \text{ if } L-\gamma_i > 0 \\ \\ 0 & \text{ otherwise.} \end{array} \right.$$

 $\bullet \ 2. < H_L > \cap k[Z_1, \ldots, \stackrel{\wedge}{,}, \ldots, Z_n] \subseteq < H_{L_i} >$

In the Artinian case M is cyclic, in positive dimension further conditions will be required.

Notation:

$$L = (l_1, ..., l_d) \in \mathbb{N}_+^d$$

$$\gamma_i = (0, ..., 0, 1, 0, ..., 0)$$

$$L_i = (l_1, ..., l_{i-1}, 1, l_{i+1}, ..., l_d)$$

Definition. Let d>0 and let $M\neq (0)$ be a S-submodule of the $D=E_S(k)$. We say that M is G_d -admissible, $1\leq d< n$, if it admits a system of generators $\{H_L\}_{L\in\mathbb{N}_+^d}$ in $D=k[Z_1,\ldots,Z_n]$ satisfying for every $L\in\mathbb{N}_+^d$ and $i=1,\ldots,d$ the following conditions:

$$1. \ z_i \circ H_L = \left\{ \begin{array}{ll} H_{L-\gamma_i} & \text{if } L-\gamma_i > 0 \\ \\ 0 & \text{otherwise.} \end{array} \right.$$

• 2.
$$< H_L > \cap k[Z_1, \ldots, \bigwedge_i, \ldots, Z_n] \subseteq < H_{L_i} >$$

d-dimensional Gorenstein rings Main Theorem (J. Elias, R.)

With the above notation:

$$\begin{pmatrix} S/I \text{ Gorenstein} \\ d\text{-dimensional rings} \\ (graded) \\ multiplicity e \\ multiplicity e \end{pmatrix} \longleftrightarrow \begin{pmatrix} M = (H_L, L \in \mathbb{N}_+^d) \subseteq D \\ G_d\text{-admissible} \\ (homogeneous) \\ Gime \in H_L, L \in \mathbb{N}_+^d \subseteq D \\ G_d\text{-admissible} \\ (homogeneous) \\ Gime \in H_L, L \in \mathbb{N}_+^d \subseteq D \\ G_d\text{-admissible} \\ (homogeneous) \\ Gime \in H_L, L \in \mathbb{N}_+^d \subseteq D \\ G_d\text{-admissible} \\ (homogeneous) \\ Gime \in H_L, L \in \mathbb{N}_+^d \subseteq D \\ G_d\text{-admissible} \\ (homogeneous) \\ Gime \in H_L, L \in \mathbb{N}_+^d \subseteq D \\ G_d\text{-admissible} \\ (homogeneous) \\ Gime \in H_L, L \in \mathbb{N}_+^d \subseteq D \\ G_d\text{-admissible} \\ (homogeneous) \\ Gime \in H_L, L \in \mathbb{N}_+^d \subseteq D \\ G_d\text{-admissible} \\ (homogeneous) \\ Gime \in H_L, L \in \mathbb{N}_+^d \subseteq D \\ G_d\text{-admissible} \\ (homogeneous) \\ Gime \in H_L, L \in \mathbb{N}_+^d \subseteq D \\ G_d\text{-admissible} \\ (homogeneous) \\ Gime \in H_L, L \in H_L, L \in H_L \\ (homogeneous) \\ Gime \in H_L, L \in H_L \\ (homogeneous) \\ Gime \in H_L, L \in H_L \\ (homogeneous) \\ Gime \in H_L, L \in H_L \\ (homogeneous) \\ Gime \in H_L \\ (homogeneous) \\ (homogeneous) \\ Gime \in H_L \\ (homogeneous) \\ (homoge$$

d-dimensional Gorenstein rings Main Theorem (J. Elias, R.)

With the above notation:

$$\begin{cases} S/I \text{ Gorenstein} \\ \text{d-dimensional rings} \\ (graded) \\ \text{multiplicity } e \\ \text{regularity } r \end{cases} \longleftrightarrow \begin{cases} M = \langle H_L, L \in \mathbb{N}_+^d \rangle \subseteq D \\ G_d\text{-admissible} \\ (\text{homogeneous}) \\ \dim_k < H_{1_d} >= e \\ \deg H_{1_d} = r \end{cases}$$

$$\langle (I + (\underline{z}^L))^{\perp}, L \in \mathbb{N}_+^d \rangle$$

$$\underline{z} \text{ regular linear sequence } \underline{mod}$$

$$\begin{cases} S/I \text{ Gorenstein} \\ d\text{-dimensional rings} \\ (graded) \\ \text{multiplicity } e \\ \text{regularity } r \end{cases} \longleftrightarrow \begin{cases} M = \langle H_L, L \in \mathbb{N}_+^d \rangle \subseteq D \\ G_d\text{-admissible} \\ (\text{homogeneous}) \\ \dim_k < H_{\mathbf{1}_d} >= e \\ \deg H_{\mathbf{1}_d} = r \end{cases}$$

$$\langle (I + (\underline{z}^L))^{\perp}, L \in \mathbb{N}_+^d \rangle$$

$$\underline{z} \text{ regular linear sequence } \underline{mod} \ I$$

$$\langle H_I, L \in \mathbb{N}_+^d \rangle$$

$$\begin{cases} S/I \text{ Gorenstein} \\ d\text{-dimensional rings} \\ (graded) \\ \text{multiplicity } e \\ \text{regularity } r \end{cases} \longleftrightarrow \begin{cases} M = \langle H_L, L \in \mathbb{N}_+^d \rangle \subseteq D \\ G_d\text{-admissible} \\ (\text{homogeneous}) \\ \dim_k < H_1 >= e \\ \deg H_1 = r \end{cases}$$

$$\begin{cases} I \\ \longrightarrow \\ (I + (\underline{z}^L))^{\perp}, L \in \mathbb{N}_+^d \rangle \\ \underline{z} \text{ regular linear sequence } mod I \end{cases}$$

$$\begin{cases} Ann_S(\langle H_L \rangle) \\ \longleftarrow \end{cases} \longleftrightarrow \begin{cases} H_L, L \in \mathbb{N}_+^d \rangle \\ H_L, L \in \mathbb{N}_+^d \rangle \end{cases}$$

With the above notation:

There is a one-to-one correspondence between the following sets:

$$\begin{cases} S/I \text{ Gorenstein} \\ d\text{-dimensional rings} \\ (graded) \\ \text{multiplicity } e \\ \text{regularity } r \end{cases} \longleftrightarrow \begin{cases} M = \langle H_L, L \in \mathbb{N}_+^d \rangle \subseteq D \\ G_d\text{-admissible} \\ (\text{homogeneous}) \\ \dim_k < H_1 >= e \\ \deg H_1 = r \end{cases}$$

$$\begin{cases} I \\ \longrightarrow \\ (I + (\underline{z}^L))^{\perp}, L \in \mathbb{N}_+^d \rangle \\ \underline{z} \text{ regular linear sequence } mod I \end{cases}$$

$$\begin{cases} Ann_S(\langle H_L \rangle) \\ \longleftarrow \end{cases} \longleftrightarrow \begin{cases} \langle H_L, L \in \mathbb{N}_+^d \rangle \\ \langle H_L, L \in \mathbb{N}_+^d \rangle \end{cases}$$

• $H_{1_d} := H_{1,...,1}$ determines an Artinian reduction of R = S/I

$$B = R/\underline{z}R = S/I + (\underline{z}) = R/Ann(H_{1_d})$$

We present two 1-dimensional examples starting from the same Artinian reduction $S/Ann_S(H_1)$ where S=k[[x,y,z]] and

$$H_1 = X^2 + Y^3 \in D = k[X, Y, Z].$$

- $M = \langle Z^T H_1 \rangle_{t \in N}$ is G_1 -admissible and $I = (xy, x^2 y^3) \subseteq S$
- $M = \langle H_t \rangle_{t \in N^*} =$

=
$$\langle H_1, ZH_1, Z^2H_1, H_4 = Z^3H_1 + XY^4 + X^3Y, \dots Z^tH_4, \dots \rangle$$
 is C_{-2} denistible and

 $I = (xy - z^3, x^2 - y^3) \subset S$

• $H_{1_d} := H_{1,...,1}$ determines an Artinian reduction of R = S/I

$$B = R/\underline{z}R = S/I + (\underline{z}) = R/Ann(H_{1_d})$$

We present two 1-dimensional examples starting from the same Artinian reduction $S/Ann_S(H_1)$ where S=k[[x,y,z]] and

$$H_1 = X^2 + Y^3 \in D = k[X, Y, Z].$$

- $M = \langle Z^T H_1 \rangle_{t \in N}$ is G_1 -admissible and $I = (xy, x^2 y^3) \subseteq S$
- $M = \langle H_t \rangle_{t \in N^*} =$

 $= \langle H_1, ZH_1, Z^2H_1, H_4 = Z^3H_1 + XY^4 + X^3Y, \dots Z^tH_4, \dots \rangle \text{ is } G_1\text{-admissible and}$

• $H_{1_d} := H_{1,...,1}$ determines an Artinian reduction of R = S/I

$$B = R/\underline{z}R = S/I + (\underline{z}) = R/Ann(H_{1_d})$$

We present two 1-dimensional examples starting from the same Artinian reduction $S/Ann_S(H_1)$ where S=k[[x,y,z]] and

$$H_1 = X^2 + Y^3 \in D = k[X, Y, Z].$$

- $M = \langle Z^T H_1 \rangle_{t \in N}$ is G_1 -admissible and
- $I=(xy,x^2-y^3)\subseteq S$
- $M = \langle H_t \rangle_{t \in N^*} =$
- $= \langle H_1, ZH_1, Z^2H_1, H_4 = Z^3H_1 + XY^4 + X^3Y, \dots Z^4H_4, \dots \rangle$ is
- G1-admissible and
- $I = (xy z^3, x^2 y^3) \subseteq S$

• $H_{1_d} := H_{1,...,1}$ determines an Artinian reduction of R = S/I

$$B = R/\underline{z}R = S/I + (\underline{z}) = R/Ann(H_{1_d})$$

We present two 1-dimensional examples starting from the same Artinian reduction $S/Ann_S(H_1)$ where S=k[[x,y,z]] and

$$H_1 = X^2 + Y^3 \in D = k[X, Y, Z].$$

- $M = \langle Z^T H_1 \rangle_{t \in N}$ is G_1 -admissible and $I = (xy, x^2 y^3) \subseteq S$
- $M = \langle H_t \rangle_{t \in N^*} =$

=
$$\langle H_1, ZH_1, Z^2H_1, H_4 = Z^3H_1 + XY^4 + X^3Y, \dots, Z^tH_4, \dots \rangle$$
 is

 G_1 -admissible and

 $I = (xy - z^3, x^2 - y^3) \subseteq S$

• $H_{1_d} := H_{1,...,1}$ determines an Artinian reduction of R = S/I

$$B = R/\underline{z}R = S/I + (\underline{z}) = R/Ann(H_{1_d})$$

We present two 1-dimensional examples starting from the same Artinian reduction $S/Ann_S(H_1)$ where S=k[[x,y,z]] and

$$H_1 = X^2 + Y^3 \in D = k[X, Y, Z].$$

- $M = \langle Z^T H_1 \rangle_{t \in N}$ is G_1 -admissible and $I = (xy, x^2 y^3) \subseteq S$
- $M = \langle H_t \rangle_{t \in N^*} =$

=
$$\langle H_1, ZH_1, Z^2H_1, H_4 = Z^3H_1 + XY^4 + X^3Y, \dots Z^tH_4, \dots \rangle$$
 is

 G_1 -admissible and

 $I = (xy - z^3, x^2 - y^3) \subseteq S$

• $H_{\mathbf{1_d}} := H_{1,...,1}$ determines an Artinian reduction of R = S/I

$$B = R/\underline{z}R = S/I + (\underline{z}) = R/Ann(H_{1_d})$$

We present two 1-dimensional examples starting from the same Artinian reduction $S/Ann_S(H_1)$ where S=k[[x,y,z]] and

$$H_1 = X^2 + Y^3 \in D = k[X, Y, Z].$$

- $M = \langle Z^T H_1 \rangle_{t \in N}$ is G_1 -admissible and $I = (xy, x^2 y^3) \subseteq S$
- $M = \langle H_t \rangle_{t \in N^*} =$

=
$$\langle H_1, ZH_1, Z^2H_1, H_4 = Z^3H_1 + XY^4 + X^3Y, \dots Z^tH_4, \dots \rangle$$
 is

 G_1 -admissible and

 $-z^3, x^2-y^3) \subseteq S$

• $H_{1_d} := H_{1,...,1}$ determines an Artinian reduction of R = S/I

$$B = R/\underline{z}R = S/I + (\underline{z}) = R/Ann(H_{1_d})$$

We present two 1-dimensional examples starting from the same Artinian reduction $S/Ann_S(H_1)$ where S=k[[x,y,z]] and

$$H_1 = X^2 + Y^3 \in D = k[X, Y, Z].$$

- $M = \langle Z^T H_1 \rangle_{t \in N}$ is G_1 -admissible and $I = (xy, x^2 y^3) \subseteq S$
- $M = \langle H_t \rangle_{t \in N^*} =$

=
$$\langle H_1, ZH_1, Z^2H_1, H_4 = Z^3H_1 + XY^4 + X^3Y, \dots Z^tH_4, \dots \rangle$$
 is

 G_1 -admissible and

 $(x^2 - y^3) \subseteq S$

• $H_{1_d} := H_{1,...,1}$ determines an Artinian reduction of R = S/I

$$B = R/\underline{z}R = S/I + (\underline{z}) = R/Ann(H_{1_d})$$

We present two 1-dimensional examples starting from the same Artinian reduction $S/Ann_S(H_1)$ where S=k[[x,y,z]] and

$$H_1 = X^2 + Y^3 \in D = k[X, Y, Z].$$

- $M = \langle Z^T H_1 \rangle_{t \in N}$ is G_1 -admissible and $I = (xy, x^2 y^3) \subseteq S$
- $M = \langle H_t \rangle_{t \in N^*} =$ $= \langle H_1, ZH_1, Z^2H_1, H_4 = Z^3H_1 + XY^4 + X^3Y, \dots Z^tH_4, \dots \rangle \text{ is }$ G_1 -admissible and $\int_{-\infty}^{\infty} (x_1 x_2^3) x^2 y^3 \rangle \in S$

• $H_{1_d} := H_{1,...,1}$ determines an Artinian reduction of R = S/I

$$B = R/\underline{z}R = S/I + (\underline{z}) = R/Ann(H_{1_d})$$

We present two 1-dimensional examples starting from the same Artinian reduction $S/Ann_S(H_1)$ where S=k[[x,y,z]] and

$$H_1 = X^2 + Y^3 \in D = k[X, Y, Z].$$

- $M = \langle Z^T H_1 \rangle_{t \in N}$ is G_1 -admissible and $I = (xy, x^2 y^3) \subseteq S$
- $M = \langle H_t \rangle_{t \in N^*} =$ $= \langle H_1, ZH_1, Z^2H_1, H_4 = Z^3H_1 + XY^4 + X^3Y, \dots Z^tH_4, \dots \rangle \text{ is }$ G_1 -admissible and $I = (xy z^3, x^2 y^3) \subseteq S$

In the graded case only a finite number of steps are necessary in the construction:

Theorem [Elias,—]

If $M = \langle H_L, L \in \mathbb{N}_+^d \rangle \subseteq D$ is a homogeneous G_d -admissible S-submodule of D, then

$$I = Ann_{S}(H_{r+2,...,r+2}) \leq r+1 S.$$

where $r = \deg H_{1_d}$.

In the graded case only a finite number of steps are necessary in the construction:

Theorem [Elias,—]

If $M = \langle H_L, L \in \mathbb{N}_+^d \rangle \subseteq D$ is a homogeneous G_d -admissible S-submodule of D, then

$$I = Ann_{\mathcal{S}}(H_{r+2,\dots,r+2})_{\leq r+1}\mathcal{S}.$$

where $r = \deg H_{1_d}$.

In the graded case only a finite number of steps are necessary in the construction:

Theorem [Elias,—]

If $M = \langle H_L, L \in \mathbb{N}_+^d \rangle \subseteq D$ is a homogeneous G_d -admissible S-submodule of D, then

$$I = Ann_{\mathcal{S}}(H_{r+2,\dots,r+2})_{\leq r+1}\mathcal{S}.$$

where $r = \deg H_{1_d}$.

Let
$$H_{11} = X^2 + Y^2 + XZ \in D = k[X, Y, Z, T, W]$$
 (codim = 3, d = 2)

Notice that $e = \dim_k < H_{11} >= \dim_k < H_1, X + Z, Y, X, 1 >= 5$ and $r = \deg H_{11} = 2$.

We may construct

$$H_{22} = TW H_{11} + C_2,$$

 $H_{33} = TW H_{22} + C_3,$
 $H_{44} = TW H_{33} + C_4$

with $C_i \in k[T, W]$ satisfying the conditions and by the previous resulting

$$I = Ann_S(H_{4.4})_{<3}S$$

Let
$$H_{11} = X^2 + Y^2 + XZ \in D = k[X, Y, Z, T, W]$$
 (codim = 3, d = 2)

Notice that $e = \dim_k < H_{11} >= \dim_k < H_1, X + Z, Y, X, 1 >= 5$ and $r = \deg H_{11} = 2$.

We may construct

$$H_{22} = TW H_{11} + C_2,$$

 $H_{33} = TW H_{22} + C_3,$
 $H_{44} = TW H_{33} + C_4$

with $C_i \in k[T, W]$ satisfying the conditions and by the previous result

$$I = Ann_S(H_{4,4})_{\leq 3}S$$

Let
$$H_{11} = X^2 + Y^2 + XZ \in D = k[X, Y, Z, T, W]$$
 (codim = 3, d = 2)

Notice that $e = \dim_k < H_{11} > = \dim_k < H_1, X + Z, Y, X, 1 > = 5$ and $r = \deg H_{11} = 2$.

We may construct

$$H_{22} = TW H_{11} + C_2,$$

 $H_{33} = TW H_{22} + C_3,$
 $H_{44} = TW H_{33} + C_4$

with $C_i \in k[T, W]$ satisfying the conditions and by the previous result

$$I = Ann_S(H_{4,4})_{\leq 3}S$$

Let
$$H_{11} = X^2 + Y^2 + XZ \in D = k[X, Y, Z, T, W]$$
 (codim = 3, d = 2)

Notice that $e = \dim_k < H_{11} > = \dim_k < H_1, X + Z, Y, X, 1 > = 5$ and $r = \deg H_{11} = 2$.

We may construct

$$H_{22} = TW \ H_{11} + C_2,$$

 $H_{33} = TW \ H_{22} + C_3,$
 $H_{44} = TW \ H_{33} + C_4$

with $C_i \in k[T, W]$ satisfying the conditions and by the previous result

$$I = Ann_S(H_{4,4})_{<3}S$$

Let
$$H_{11} = X^2 + Y^2 + XZ \in D = k[X, Y, Z, T, W]$$
 (codim = 3, d = 2)

Notice that $e = \dim_k < H_{11} > = \dim_k < H_1, X + Z, Y, X, 1 > = 5$ and $r = \deg H_{11} = 2$.

We may construct

$$H_{22} = TW H_{11} + C_2,$$

 $H_{33} = TW H_{22} + C_3,$
 $H_{44} = TW H_{33} + C_4$

with $C_i \in k[T, W]$ satisfying the conditions and by the previous result

$$I = Ann_S(H_{4,4})_{\leq 3}S$$

$$I = (z^{2} - xt + zt + zw + tw, yz - t^{2} + yw, -y^{2} + xz + t^{2},$$
$$-xy + zt + t^{2}, x^{2} - xz - yt + zt - xw + tw).$$

R = S/I is a two-dimensional Gorenstein ring of multiplicity 5, $\{w, t\}$ is a regular sequence in S/I.

The projective scheme C defined by S/I is a non-singular arithmetically Gorenstein elliptic curve of \mathbb{P}^4_k .

$$I = (z^{2} - xt + zt + zw + tw, yz - t^{2} + yw, -y^{2} + xz + t^{2},$$
$$-xy + zt + t^{2}, x^{2} - xz - yt + zt - xw + tw).$$

R = S/I is a two-dimensional Gorenstein ring of multiplicity 5, $\{w, t\}$ is a regular sequence in S/I.

The projective scheme C defined by S/I is a non-singular arithmetically Gorenstein elliptic curve of \mathbb{P}^4_{ν} .

$$I = (z^{2} - xt + zt + zw + tw, yz - t^{2} + yw, -y^{2} + xz + t^{2},$$
$$-xy + zt + t^{2}, x^{2} - xz - yt + zt - xw + tw).$$

R = S/I is a two-dimensional Gorenstein ring of multiplicity 5, $\{w, t\}$ is a regular sequence in S/I.

The projective scheme C defined by S/I is a non-singular arithmetically Gorenstein elliptic curve of \mathbb{P}^4_k .

$$\begin{pmatrix}
0 & -x+t & -t & x & -y \\
x-t & 0 & x & -y & z+t \\
t & -x & 0 & z+w & 0 \\
-x & y & -z-w & 0 & -t \\
y & -z-t & 0 & t & 0
\end{pmatrix}$$

$$I = (z^{2} - xt + zt + zw + tw, yz - t^{2} + yw, -y^{2} + xz + t^{2},$$
$$-xy + zt + t^{2}, x^{2} - xz - yt + zt - xw + tw).$$

R = S/I is a two-dimensional Gorenstein ring of multiplicity 5, $\{w, t\}$ is a regular sequence in S/I.

The projective scheme C defined by S/I is a non-singular arithmetically Gorenstein elliptic curve of \mathbb{P}^4_k .

$$\begin{pmatrix} 0 & -x+t & -t & x & -y \\ x-t & 0 & x & -y & z+t \\ t & -x & 0 & z+w & 0 \\ -x & y & -z-w & 0 & -t \\ y & -z-t & 0 & t & 0 \end{pmatrix}$$

- J. Elias, M. E. Rossi Isomorphism classes of Artinian local rings via Macaulay's inverse system, Trans. A.M.S. Volume 364, Number 9, (2012), Pages 45894604.
- G. Casnati, J. Elias, R. Notari, M. E. Rossi, Poincare' series and deformations of Gorenstein local algebras with low socle degree, Comm. In Algebra. 41 (2013), 1049–1059.
- M.E. Rossi, L. Şega, The Poincare' series of modules over compressed Gorenstein local rings, Advances in Math. 259 (2014) 421-447.
- J. Elias, M.E. Rossi Analytically isomorphisms of compressed algebras, Proc. Amer. Math. Soc. 143 (2015) 973-987
- J. Elias, M.E. Rossi The structure of the inverse system of Gorenstein k-algebras, preprint.

- J. Elias, M. E. Rossi *Isomorphism classes of Artinian local rings via Macaulay's inverse system*, Trans. A.M.S. Volume 364, Number 9, (2012), Pages 45894604.
- G. Casnati, J. Elias, R. Notari, M. E. Rossi, Poincare' series and deformations of Gorenstein local algebras with low socle degree, Comm. In Algebra. 41 (2013), 1049–1059.
- M.E. Rossi, L. Şega, The Poincare' series of modules over compressed Gorenstein local rings, Advances in Math. 259 (2014) 421-447.
- J. Elias, M.E. Rossi Analytically isomorphisms of compressed algebras, Proc. Amer. Math. Soc. 143 (2015) 973-987
- J. Elias, M.E. Rossi *The structure of the inverse system of Gorenstein k-algebras*, preprint.

- J. Elias, M. E. Rossi *Isomorphism classes of Artinian local rings via Macaulay's inverse system*, Trans. A.M.S. Volume 364, Number 9, (2012), Pages 45894604.
- G. Casnati, J. Elias, R. Notari, M. E. Rossi, *Poincare' series and deformations of Gorenstein local algebras with low socle degree*, Comm. In Algebra. 41 (2013), 1049–1059.
- M.E. Rossi, L. Şega, The Poincare' series of modules over compressed Gorenstein local rings, Advances in Math. 259 (2014) 421-447.
- J. Elias, M.E. Rossi Analytically isomorphisms of compressed algebras, Proc. Amer. Math. Soc. 143 (2015) 973-987
- J. Elias, M.E. Rossi The structure of the inverse system of Gorenstein k-algebras, preprint.

- J. Elias, M. E. Rossi *Isomorphism classes of Artinian local rings via Macaulay's inverse system*, Trans. A.M.S. Volume 364, Number 9, (2012), Pages 45894604.
- G. Casnati, J. Elias, R. Notari, M. E. Rossi, *Poincare' series and deformations of Gorenstein local algebras with low socle degree*, Comm. In Algebra. 41 (2013), 1049–1059.
- M.E. Rossi, L. Şega, *The Poincare' series of modules over compressed Gorenstein local rings*, Advances in Math. 259 (2014) 421-447.
- J. Elias, M.E. Rossi Analytically isomorphisms of compressed algebras, Proc. Amer. Math. Soc. 143 (2015) 973-987
- J. Elias, M.E. Rossi The structure of the inverse system of Gorenstein k-algebras, preprint.

- J. Elias, M. E. Rossi *Isomorphism classes of Artinian local rings via Macaulay's inverse system*, Trans. A.M.S. Volume 364, Number 9, (2012), Pages 45894604.
- G. Casnati, J. Elias, R. Notari, M. E. Rossi, *Poincare' series and deformations of Gorenstein local algebras with low socle degree*, Comm. In Algebra. 41 (2013), 1049–1059.
- M.E. Rossi, L. Şega, *The Poincare' series of modules over compressed Gorenstein local rings*, Advances in Math. 259 (2014) 421-447.
- J. Elias, M.E. Rossi *Analytically isomorphisms of compressed algebras*, Proc. Amer. Math. Soc. 143 (2015) 973-987
- J. Elias, M.E. Rossi *The structure of the inverse system of Gorenstein k-algebras*, preprint.

THANK YOU FOR THE ATTENTION!