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an extension of Macaulay's Inverse System theorem to Gorenstein
d-dimensional k-algebras

The results are obtained jointly with J. Elias
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GORENSTEIN RINGS
Preliminaries

Let S be a regular ring (k[x1,...,xn] or k[[x1,...,xn]])-
Consider
R=S5/I

The codimension of R (of /) is defined by

codim(R) = dimS — dimR = n — dimR
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GORENSTEIN RINGS
Preliminaries

Let S be a regular ring (k[x1,...,xn] or k[[x1,...,xn]])-
Consider
R=S5/I

The codimension of R (of /) is defined by

codim(R) = dimS — dimR = n — dimR

R is said a complete intersection (c.i.) if / can be generated by
codim(R) elements.
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GORENSTEIN RINGS
Preliminaries

Let S be a regular ring (k[x1,...,xn] or k[[x1,...,xn]])-
Consider
R=S5/I

The codimension of R (of /) is defined by

codim(R) = dimS — dimR = n — dimR

R is said a complete intersection (c.i.) if / can be generated by
codim(R) elements.

c.i. = Gorenstein
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Preliminaries

Based on the famous paper by H. Bass ('63) (On the ubiquity of
Gorenstein rings), there are many equivalent definitions of Gorenstein
rings:
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GORENSTEIN RINGS
Preliminaries

Based on the famous paper by H. Bass ('63) (On the ubiquity of
Gorenstein rings), there are many equivalent definitions of Gorenstein
rings:

Definition. R is Gorenstein if R is Cohen-Macaulay and its dualizing
module (or canonical module) Ext2 ¢(R, S) is free (of rank 1) where
d = dimR.
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GORENSTEIN RINGS
Preliminaries

Based on the famous paper by H. Bass ('63) (On the ubiquity of
Gorenstein rings), there are many equivalent definitions of Gorenstein
rings:

Definition. R is Gorenstein if R is Cohen-Macaulay and its dualizing
module (or canonical module) Ext2 ¢(R, S) is free (of rank 1) where
d = dimR.

In terms of free resolutions

Proposition. Let0 — F. - F._1 — -+ —>Fp—>R—0
a minimal free S-resolution of R. Then

R is Gorenstein <= ¢ = codim(R) and F. ~ S
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GORENSTEIN RINGS
Preliminaries

Based on the famous paper by H. Bass ('63) (On the ubiquity of
Gorenstein rings), there are many equivalent definitions of Gorenstein
rings:

Definition. R is Gorenstein if R is Cohen-Macaulay and its dualizing
module (or canonical module) Ext2 ¢(R, S) is free (of rank 1) where
d = dimR.

In terms of free resolutions

Proposition. Let0 — F. - F._1 — -+ —>Fp—>R—0
a minimal free S-resolution of R. Then

R is Gorenstein <= ¢ = codim(R) and F. ~ S

Codim(R)=2 0—5S5S—-52—-S—-R—0
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GORENSTEIN RINGS
Preliminaries

Based on the famous paper by H. Bass ('63) (On the ubiquity of
Gorenstein rings), there are many equivalent definitions of Gorenstein
rings:

Definition. R is Gorenstein if R is Cohen-Macaulay and its dualizing
module (or canonical module) Ext2 ¢(R, S) is free (of rank 1) where
d = dimR.

In terms of free resolutions

Proposition. Let0 — F. - F._1 — -+ —>Fp—>R—0
a minimal free S-resolution of R. Then

R is Gorenstein <= ¢ = codim(R) and F. ~ S

Codim(R)=2 0—5S5S—-52—-S—-R—0

Gorenstein <= c.i.
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GORENSTEIN RINGS
Preliminaries

Theorem. [Buchsbaum-Eisenbud] codim(R) = 3

R is Gorenstein <= [ is generated by 2m-order Pfaffians of a
skew-symmetric (2m + 1) alternating matrix A.

In this case a minimal free resolution of R over S has the form

0%5%§m1j5mﬂa5+Rao
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GORENSTEIN RINGS
Preliminaries

Theorem. [Buchsbaum-Eisenbud] codim(R) = 3

R is Gorenstein <= [ is generated by 2m-order Pfaffians of a
skew-symmetric (2m + 1) alternating matrix A.

In this case a minimal free resolution of R over S has the form

0%5%§m1j5mH%5%R%0

A. Kustin, M. Reid studied the projective resolution of Gorenstein
ideals of codimension 4, aiming to extend the previous famous
theorem by Buchsbaum and Eisenbud.
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GORENSTEIN RINGS
Preliminaries

Theorem. [Buchsbaum-Eisenbud] codim(R) = 3

R is Gorenstein <= [ is generated by 2m-order Pfaffians of a
skew-symmetric (2m + 1) alternating matrix A.

In this case a minimal free resolution of R over S has the form

0%5%§m1j5mH%5%R%0

A. Kustin, M. Reid studied the projective resolution of Gorenstein
ideals of codimension 4, aiming to extend the previous famous
theorem by Buchsbaum and Eisenbud.

To date a geometric or an algebraic description of Gorenstein rings
of any dimension and codimension is not understood.
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Let k = k of arbitrary characteristic.

Let S = k[[x1,...,xa]] (or k[x1,...,xs]) and let Es(k) the injective hull
of k as R-module.

MARIA EVELINA RossI, UNIV / OF GENOA c STEIN k-ALG APAN NOVEMBER 18-22, 2016



MATLIS DUALITY

Inverse system

Let k = k of arbitrary characteristic.

Let S = k[[x1,...,xa]] (or k[x1,...,xs]) and let Es(k) the injective hull
of k as R-module. Gabriel (58) observed that an injective hull of
k=S5/(x1,...,%n)

Es(k) ~ DK(Sy) ~ k[Xi,...,X,] :== D
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Let k = k of arbitrary characteristic.

Let S = k[[x1,...,xa]] (or k[x1,...,xs]) and let Es(k) the injective hull
of k as R-module. Gabriel (58) observed that an injective hull of
k=S5/(x1,...,%n)

Es(k) ~ DK(Sy) ~ k[Xi,...,X,] :== D

a divided power ring.
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MATLIS DUALITY

Inverse system

Let k = k of arbitrary characteristic.

Let S = k[[x1,...,xa]] (or k[x1,...,xs]) and let Es(k) the injective hull
of k as R-module. Gabriel (58) observed that an injective hull of
k=S5/(x1,...,%n)

Es(k) ~ DK(Sy) ~ k[Xi,...,X,] :== D
a divided power ring.
D is a S-module by a contraction action:
x; o X = x; 0 (X{ - X2n) :Xf‘~-~Xf"*1--~X,f"

if a; > 0. If a; =0, then is 0.
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INVERSE SYSTEM

Example:
x1 o XiXo= X1 X
X1 © X22 =
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INVERSE SYSTEM

Example:
x1 o XiXo= X1 X
X1 © X22 =0

If we assume char(k) = 0, then

(D,o) =~ (k[X1,...,X3],0)
xlal ., Xxlal

al

where al = [[(a;!) and 0 is the usual partial derivative (with
coefficients).
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We denote
V' = Homs(-, D)

the exact functor in the category of the S-modules.
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We denote
V' = Homs(-, D)

the exact functor in the category of the S-modules. Matlis ('58)
showed that the functor Vv defines an equivalence between

{Artinian S-modules} — {Noetherian S-modules }
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INVERSE SYSTEM

We denote
V' = Homs(-, D)

the exact functor in the category of the S-modules. Matlis ('58)
showed that the functor Vv defines an equivalence between

{Artinian S-modules} — {Noetherian S-modules }

S/ - (S/1)Y =1t =<{g(X)eD|log(X)=0}>
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INVERSE SYSTEM

Example :  Let | = (x?,y%) C S = k[[x,y]]. Then I+ is a
S-submodule of D = k[X, Y] and

It =<{geD|x*?0og=0and y*og =0} >=< XY? >
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INVERSE SYSTEM

Example :  Let | = (x?,y%) C S = k[[x,y]]. Then I+ is a
S-submodule of D = k[X, Y] and

It =<{geD|x*?0og=0and y*og =0} >=< XY? >

If I C S is an ideal (not necessarily 0-dimensional), then
(§/1) = Homs(R/1,D) ~ I =< {g(X) € D | I o g(X) = 0} >,

a S-submodule of D and called Macaulay's inverse system of /.
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INVERSE SYSTEM

Example :  Let | = (x?,y%) C S = k[[x,y]]. Then I+ is a
S-submodule of D = k[X, Y] and

It =<{geD|x*?0og=0and y*og =0} >=< XY? >

If I C S is an ideal (not necessarily 0-dimensional), then
(§/1) = Homs(R/1,D) ~ I =< {g(X) € D | I o g(X) = 0} >,

a S-submodule of D and called Macaulay's inverse system of /.

I+ is finitely generated <= S/l is O-dimensional
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INVERSE SYSTEM

Example :  Let | = (x?,y%) C S = k[[x,y]]. Then I+ is a
S-submodule of D = k[X, Y] and

It =<{geD|x*?0og=0and y*og =0} >=< XY? >

If I C S is an ideal (not necessarily 0-dimensional), then
(§/1) = Homs(R/1,D) ~ I =< {g(X) € D | I o g(X) = 0} >,

a S-submodule of D and called Macaulay's inverse system of /.

I+ is finitely generated <= S/l is O-dimensional

S/I is O-dimensional Gorenstein <= I+ is cyclic.
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ARTINIAN Gorenstein k-algebras

Macaulay's Inverse System

Macaulay proved that there is the following 1-1 correspondence

| C S ideal such that M=SoF
S/1 is Artinian Gorenstein “ S-cyclic submodule of D
with socledegree(S//) = s. with degree F =5
/ — I+
Anns(F) — M = <F>5
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ARTINIAN Gorenstein k-algebras

Macaulay's Inverse System

Macaulay proved that there is the following 1-1 correspondence

| C S ideal such that M=SoF
S/1 is Artinian Gorenstein “ S-cyclic submodule of D
with socledegree(S//) = s. with degree F =5
/ — I+
Anns(F) — M = <F>5

Given a S-submodule M of D then
Anng(M) ={f(x) € S | f(x)o M =0}.

is an ideal of S.
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Macaulay Inverse System

Example 1. Let F = X2 + Y3 € D = k[X, Y] and let S = k[[x, y]].
Then
I'= Anns(F) = (xy.x* = y%)

and R = 5/ is Gorenstein c.i.
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EXAMPLES

Macaulay Inverse System

Example 1. Let F = X2 + Y3 € D = k[X, Y] and let S = k[[x, y]].
Then
I'= Anns(F) = (xy.x* = y%)

and R = 5/ is Gorenstein c.i.

e =((S/1) = dimy < F >
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Macaulay Inverse System

Example 1. Let F = X2 + Y3 € D = k[X, Y] and let S = k[[x, y]].
Then
I'= Anns(F) = (xy.x* = y%)

and R = 5/ is Gorenstein c.i.

e=1/((S/)=dim, < F>=dim, < F, Y2 X,Y,1>=5.
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EXAMPLES

Macaulay Inverse System

Example 1. Let F = X2 + Y3 € D = k[X, Y] and let S = k[[x, y]].
Then
I'= Anns(F) = (xy.x* = y%)

and R = 5/ is Gorenstein c.i.

e=1/((S/)=dim, < F>=dim, < F, Y2 X,Y,1>=5.

HFs/;(j) = dimy(I+);
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EXAMPLES

Macaulay Inverse System

Example 1. Let F = X2 + Y3 € D = k[X, Y] and let S = k[[x, y]].
Then
I'= Anns(F) = (xy.x* = y%)

and R = 5/ is Gorenstein c.i.

e=1/((S/)=dim, < F>=dim, < F, Y2 X,Y,1>=5.

HFs)(j) = dimy(/1+); « h= (1, 2, 1, 1)
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EXAMPLES

Macaulay Inverse System

Example 1. Let F = X2 + Y3 € D = k[X, Y] and let S = k[[x, y]].
Then
I'= Anns(F) = (xy.x* = y%)

and R = 5/ is Gorenstein c.i.

e=1/((S/)=dim, < F>=dim, < F, Y2 X,Y,1>=5.

HFs)(j) = dimy(/1+); « h= (1, 2, 1, 1)

Example 2. Let F = X2+ Y24+ 27Z%2¢c D =k[X,Y,Z] and let
S = k[[x,y, 2]].
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EXAMPLES

Macaulay Inverse System

Example 1. Let F = X2 + Y3 € D = k[X, Y] and let S = k[[x, y]].
Then
I'= Anns(F) = (xy.x* = y%)

and R = 5/ is Gorenstein c.i.

e=1/((S/)=dim, < F>=dim, < F, Y2 X,Y,1>=5.
HFs)(j) = dimy(/1+); « h= (1, 2, 1, 1)

Example 2. Let F = X2+ Y24+ 27Z%2¢c D =k[X,Y,Z] and let
S =K[[x,y,z]]. Then

I = Anns(F) = (x®> — y2,y? — 2%, xy, xz, yz)

and R = 5/ is Gorenstein (not c.i.).
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Isomorphism classes of 0-dimensional Gorenstein rings

Macaulay Inverse System
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Isomorphism classes of 0-dimensional Gorenstein rings

Macaulay Inverse System

We may translate in terms of F many properties of the
corresponding Gorenstein ideal

MARIA EVELINA RossI, UNIV / OF GENOA c STEIN k-ALG APAN NOVEMBER 18-22, 2016



Isomorphism classes of 0-dimensional Gorenstein rings

Macaulay Inverse System

We may translate in terms of F many properties of the
corresponding Gorenstein ideal

For instance we translate in an effective framework the analytic
isomorphisms of Gorenstein 0-dimensional k-algebras in terms of
the dual module < F >
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Isomorphism classes of 0-dimensional Gorenstein rings

Macaulay Inverse System

We may translate in terms of F many properties of the
corresponding Gorenstein ideal

For instance we translate in an effective framework the analytic
isomorphisms of Gorenstein 0-dimensional k-algebras in terms of
the dual module < F >

This topic plays an important role in studying the Hilbert scheme
Hilby(P™) parametrizing Gorenstein 0-dimensional subschemes of P" and
the rationality of the Poincaré series of k as R-module, see [Emsalem],
[larrobino], [Poonen], [Erman], [Cartwright-Erman-Velasco-Viray], [,
Segal, ...
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Isomorphism classes of 0-dimensional Gorenstein rings

Macaulay Inverse System
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Isomorphism classes of 0-dimensional Gorenstein rings

Macaulay Inverse System

Proposition. Let A= S/l and B =S/J be two local Artinian
Gorenstein algebras so that | = Anns(F) and J = Anns(G) with
F,G € D. Then TFAE:
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Isomorphism classes of 0-dimensional Gorenstein rings

Macaulay Inverse System

Proposition. Let A= S/l and B =S/J be two local Artinian
Gorenstein algebras so that | = Anns(F) and J = Anns(G) with
F,G € D. Then TFAE:

1. A~ B
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Isomorphism classes of 0-dimensional Gorenstein rings

Macaulay Inverse System

Proposition. Let A= S/l and B =S/J be two local Artinian
Gorenstein algebras so that | = Anns(F) and J = Anns(G) with
F,G € D. Then TFAE:

1. A~ B
2. 3¢ € Aut(S) such that ¢(/) = J
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Isomorphism classes of 0-dimensional Gorenstein rings

Macaulay Inverse System

Proposition. Let A= S/l and B =S/J be two local Artinian
Gorenstein algebras so that | = Anns(F) and J = Anns(G) with
F,G € D. Then TFAE:

1. A~ B
2. 3¢ € Aut(S) such that ¢(/) = J
3. 3¢ € Aut(S) such that ¢V(G) = uo F with u € S*
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Isomorphism classes of 0-dimensional Gorenstein rings

Macaulay Inverse System

Proposition. Let A= S/l and B =S/J be two local Artinian
Gorenstein algebras so that | = Anns(F) and J = Anns(G) with
F,G € D. Then TFAE:

1. A~ B
2. 3¢ € Aut(S) such that ¢(/) = J
3. 3¢ € Aut(S) such that ¢V(G) = uo F with u € S*

4. F and G lie in the same G-orbit of D where
G = Aut(S) x S§*.
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d-dimensional Gorenstein rings
GOAL




d-dimensional Gorenstein rings
GOAL

Characterize the S-submodules M of D (not finitely generated!)
such that
S/Anns(M)

is a d-dimensional Gorenstein ring
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d-dimensional Gorenstein rings
GOAL

Characterize the S-submodules M of D (not finitely generated!)
such that
S/Anns(M)

is a d-dimensional Gorenstein ring (codimension n,
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d-dimensional Gorenstein rings
GOAL

Characterize the S-submodules M of D (not finitely generated!)
such that
S/Anns(M)

is a d-dimensional Gorenstein ring (codimension n, multiplicity e,
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d-dimensional Gorenstein rings
GOAL

Characterize the S-submodules M of D (not finitely generated!)
such that
S/Anns(M)

is a d-dimensional Gorenstein ring (codimension n, multiplicity e,
regularity r, .....)
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d-dimensional Gorenstein rings

Gg-admissible

In the Artinian case M is cyclic, in positive dimension further conditions
will be required.




d-dimensional Gorenstein rings
Gg-admissible

In the Artinian case M is cyclic, in positive dimension further conditions
will be required.

Notation:
L=(h,...,lq) e N
~i =(0,...,0, 1 0,...,0)

L_(/17" Ila]:/1+17"'7/d)
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d-dimensional Gorenstein rings

Gg-admissible

In the Artinian case M is cyclic, in positive dimension further conditions
will be required.

Notation:
L=(h,...,lq) e N
% =(0,...,0,1,0,...,0)

L_(/17" I 131;/I+17"'7/d)

Definition. Let d > 0 and let M # (0) be a S-submodule of the
D = Es(k). We say that M is Gg-admissible, 1 < d < n,
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d-dimensional Gorenstein rings

Gg-admissible

In the Artinian case M is cyclic, in positive dimension further conditions
will be required.

Notation:
L=(h,...,lq) e N
% =(0,...,0,1,0,...,0)

L_(/17" I 131;/I+17"'7/d)

Definition. Let d > 0 and let M # (0) be a S-submodule of the

D = Es(k). We say that M is Gg-admissible, 1 < d < n, if it admits a
system of generators {H_},cne in D = k[Z1,..., Z] satisfying for every
Le Ni and i =1,...,d the following conditions:
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d-dimensional Gorenstein rings

Gg-admissible

In the Artinian case M is cyclic, in positive dimension further conditions
will be required.

Notation:
L=(h,...,lq) e N
% =(0,...,0,1,0,...,0)

L_(/17" I 131;/I+17"'7/d)

Definition. Let d > 0 and let M # (0) be a S-submodule of the
D = Es(k). We say that M is Gg-admissible, 1 < d < n, if it admits a
system of generators {H_},cne in D = k[Z1,..., Z] satisfying for every
Le Ni and i =1,...,d the following conditions:

Hi—,, ifL—v >0

1. Zj O HL ==
0 otherwise.
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d-dimensional Gorenstein rings

Gg-admissible

In the Artinian case M is cyclic, in positive dimension further conditions
will be required.

Notation:
L=(h,...,lq) e N
% =(0,...,0,1,0,...,0)

L_(/17" I 131;/I+17"'7/d)

Definition. Let d > 0 and let M # (0) be a S-submodule of the
D = Es(k). We say that M is Gg-admissible, 1 < d < n, if it admits a
system of generators {H_},cne in D = k[Z1,..., Z] satisfying for every
Le Ni and i =1,...,d the following conditions:
Hi—,, ifL—v >0
1. Zj O HL ==
0 otherwise.

2. <H>nk[Zy, ..., N, ..., Zy] C< HL, >
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d-dimensional Gorenstein rings

Main Theorem (J.Elias, R)

With the above notation:
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d-dimensional Gorenstein rings

Main Theorem (J.Elias, R)

With the above notation:

There is a one-to-one correspondence between the following sets:

S/1 Gorenstein
d-dimensional rings
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d-dimensional Gorenstein rings

Main Theorem (J.Elias, R)

With the above notation:

There is a one-to-one correspondence between the following sets:

S/1 Gorenstein M= (H,LeNY)CD
d-dimensional rings Gg-admissible
(graded) — (homogeneous)
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d-dimensional Gorenstein rings

Main Theorem (J.Elias, R)

With the above notation:

There is a one-to-one correspondence between the following sets:

S/1 Gorenstein M= (H,LeNY)CD
d-dimensional rings Gg-admissible
(graded) — (homogeneous)
multiplicity e dimy < Hy, >=e
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d-dimensional Gorenstein rings

Main Theorem (J.Elias, R)

With the above notation:

There is a one-to-one correspondence between the following sets:

S/1 Gorenstein M= (H,LeNd)CD
d-dimensional rings Gg-admissible
(graded) — (homogeneous)
multiplicity e dimy < Hy, >=e
regularity r deg Hy, = r
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d-dimensional Gorenstein rings

Main Theorem (J.Elias, R)

With the above notation:

There is a one-to-one correspondence between the following sets:

S/1 Gorenstein M= (H,LeNd)CD
d-dimensional rings Gg-admissible
(graded) — (homogeneous)
multiplicity e dimy < Hy, >=e
regularity r deg Hy, = r
/ — (1 + (29)4 L e Nd)
z regular linear sequence mod |
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d-dimensional Gorenstein rings

Main Theorem (J.Elias, R)

With the above notation:

There is a one-to-one correspondence between the following sets:

S/1 Gorenstein M= (H,LeNd)CD

d-dimensional rings Gg-admissible

(graded) — (homogeneous)

multiplicity e dimy < Hy, >=e
regularity r deg Hy, = r
/ — (1 + (29)4 L e Nd)
z regular linear sequence mod |
N, Anns((HL)) — (Hi, L e NY)

MaARIA EVELINA Rossi, UN TY OF GENOA

S, JAPAN NOVEMBER 18-22, 2016



Gi-admissible
EXAMPLES

o Hy, := Hi 1 determines an Artinian reduction of R = 5//

B=R/zR =S/l +(z) = R/Ann(Hy,)
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Gi-admissible
EXAMPLES

o Hy, := Hi 1 determines an Artinian reduction of R = 5//

B=R/zR =S/l +(z) = R/Ann(Hy,)

We present two 1-dimensional examples starting from the same Artinian
reduction S/Anns(H;) where S = k[[x, y, z]] and

Hy=X?>+Y?*eD=k[X,Y,Z.
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Gi-admissible
EXAMPLES

o Hy, := Hi 1 determines an Artinian reduction of R = 5//

B=R/zR =S/l +(z) = R/Ann(Hy,)

We present two 1-dimensional examples starting from the same Artinian
reduction S/Anns(H;) where S = k[[x, y, z]] and

Hy=X?>+Y?*eD=k[X,Y,Z.

o M = (ZTHy)ien is Gi-admissible and
I = (xy,xz—y3) g 5
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Gi-admissible
EXAMPLES

o Hy, := Hi 1 determines an Artinian reduction of R = 5//

B=R/zR =S/l +(z) = R/Ann(Hy,)

We present two 1-dimensional examples starting from the same Artinian
reduction S/Anns(H;) where S = k[[x, y, z]] and

Hy=X?>+Y?*eD=k[X,Y,Z.

o M = (ZTHy)ien is Gi-admissible and
I = (xy,xz—y3) g 5

o M = <Ht>l’EN* =
- <H17
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Gi-admissible
EXAMPLES

o Hy, := Hi 1 determines an Artinian reduction of R = 5//

B=R/zR =S/l +(z) = R/Ann(Hy,)

We present two 1-dimensional examples starting from the same Artinian
reduction S/Anns(H;) where S = k[[x, y, z]] and

Hy=X?>+Y?*eD=k[X,Y,Z.

o M = (ZTHy)ien is Gi-admissible and
I = (xy,xz—y3) g 5

o M = <Ht>l’EN* =
= <H1;ZH17
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Gi-admissible
EXAMPLES

o Hy, := Hi 1 determines an Artinian reduction of R = 5//

B=R/zR =S/l +(z) = R/Ann(Hy,)

We present two 1-dimensional examples starting from the same Artinian
reduction S/Anns(H;) where S = k[[x, y, z]] and

Hy=X?>+Y?*eD=k[X,Y,Z.

o M = (ZTHy)ien is Gi-admissible and
I = (xy,xz—y3) g 5

o M = <Ht>l’EN* =

= <H1; ZH17 Z2H1a
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Gi-admissible
EXAMPLES

o Hy, := Hi 1 determines an Artinian reduction of R = 5//

B=R/zR =S/l +(z) = R/Ann(Hy,)

We present two 1-dimensional examples starting from the same Artinian
reduction S/Anns(H;) where S = k[[x, y, z]] and

Hy=X?>+Y?*eD=k[X,Y,Z.

o M = (ZTHy)ien is Gi-admissible and
I = (xy,xz—y3) g 5

o M = <Ht>l’EN* =

= (Hy, ZH1, Z%Hy, Hy = Z3H; + XY* + X3Y,
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Gi-admissible
EXAMPLES

o Hy, := Hi 1 determines an Artinian reduction of R = 5//

B=R/zR =S/l +(z) = R/Ann(Hy,)

We present two 1-dimensional examples starting from the same Artinian
reduction S/Anns(H;) where S = k[[x, y, z]] and

Hy=X?>+Y?*eD=k[X,Y,Z.

o M = (ZTHy)ien is Gi-admissible and
I = (xy,xz—y3) g 5

o M = <Ht>l’EN* =

= (Hy, ZHy, Z2Hy, Hy = Z3Hy + XY* + X3Y, .. ZtH,,...)
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Gi-admissible
EXAMPLES

o Hy, := Hi 1 determines an Artinian reduction of R = 5//

B=R/zR =S/l +(z) = R/Ann(Hy,)

We present two 1-dimensional examples starting from the same Artinian
reduction S/Anns(H;) where S = k[[x, y, z]] and

Hy=X?>+Y?*eD=k[X,Y,Z.

o M = (ZTHy)ien is Gi-admissible and
I = (xy,xz—y3) g 5

o M = <Ht>l’EN* =

= (Hy, ZH1, Z%Hy, Hy = Z3H; + XY* + X3Y, ... ZtHy,...) is
Gi-admissible and
I=(xy—-2°,x*-y*)CS
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EFFECTIVE CONSTRUCTION

Graded Case

In the graded case only a finite number of steps are necessary in
the construction:
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EFFECTIVE CONSTRUCTION

Graded Case

In the graded case only a finite number of steps are necessary in
the construction:

Theorem [Elias,—]

If M= (H;,LeN)C D isahomogeneous Gy-admissible
S-submodule of D, then

I = AnnS(Hr+2,...,r+2)§r+15-
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EFFECTIVE CONSTRUCTION

Graded Case

In the graded case only a finite number of steps are necessary in
the construction:

Theorem [Elias,—]

If M= (H;,LeN)C D isahomogeneous Gy-admissible
S-submodule of D, then

I = AnnS(Hr+2,...,r+2)§r+15-

where r = deg Hy,.
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EXAMPLE

ELLIPTIC CURVE IN Pg




EXAMPLE

ELLIPTIC CURVE IN Pg

Let Hyy = X2+ Y2+ XZ € D =K[X.Y.Z, T,W] (codim=3,d=2)
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EXAMPLE

ELLIPTIC CURVE IN Pg

Let Hyy = X2+ Y2+ XZ € D =K[X.Y.Z, T,W] (codim=3,d=2)

Notice that e = dimy < Hy; >=dimy < H;, X+ Z,Y,X,1 >=5 and
r =deg Hy; = 2.
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EXAMPLE

ELLIPTIC CURVE IN Pg

Let Hyy = X2+ Y2+ XZ € D =K[X.Y.Z, T,W] (codim=3,d=2)

Notice that e = dimy < Hy; >=dimy < H;, X+ Z,Y,X,1 >=5 and
r =deg Hy; = 2.

We may construct
Hx = TW Hi1 + G,

Hs3 = TW Ha + G,
Hyy = TW Hzz + Cy
with C; € k[T, W] satisfying the conditions
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EXAMPLE

ELLIPTIC CURVE IN Pg

Let Hyy = X2+ Y2+ XZ € D =K[X.Y.Z, T,W] (codim=3,d=2)

Notice that e = dimy < Hy; >=dimy < H;, X+ Z,Y,X,1 >=5 and
r =deg Hy; = 2.

We may construct
Hx = TW Hi1 + G,

Hss = TW Ha + G,
Hyy = TW Hzz + Cy
with G; € k[T, W] satisfying the conditions and by the previous result

| = Anng(H474)§35

We computed an admissible H, 4 by using Singular:
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and we computed Anng(Hs4)<3S :
| = (zz—xt+zt+zw—|— tw, yz — t2—|—yw,—y2+xz—|— 1.‘27

—xy +zt + 12, X% — xz — yt + zt — xw + tw).

BRAS, JAPAN NO



and we computed Anng(Hs4)<3S :
I:(zz—xt+zt+zw—|— tw,yz—t2+yw,—y2+xz—|— 1.‘27
—xy +zt + 12, X% — xz — yt + zt — xw + tw).

R = S/I is a two-dimensional Gorenstein ring of multiplicity 5,
{w, t} is a regular sequence in S/I.
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and we computed Anng(Hs4)<3S :
I:(ZZ—xt+zt+zw—|— tw,yz—t2+yw,—y2+xz—|— t2,
—xy +zt + 12, X% — xz — yt + zt — xw + tw).

R = S/I is a two-dimensional Gorenstein ring of multiplicity 5,
{w, t} is a regular sequence in S/I.

The projective scheme C defined by S// is a non-singular
arithmetically Gorenstein elliptic curve of P}.
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and we computed Anng(Has4)<3S :
I:(ZZ—xt+zt+zw—|— tw,yz—t2+yw,—y2+xz+t2,
—xy +zt + 12, X% — xz — yt + zt — xw + tw).

R = S/I is a two-dimensional Gorenstein ring of multiplicity 5,
{w, t} is a regular sequence in S/I.

The projective scheme C defined by S// is a non-singular
arithmetically Gorenstein elliptic curve of P}.

The generators of | are the Pfaffians of the skew matrix

0 —Xx+t —t X -y
X —t 0 X -y z+t
t —X 0 z+w 0
—X y —zZ—w 0 —t
y —z—t 0 t 0
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