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The material of this presentation is essentially part of the papers [38], [34], jointly with G. Valla,
University of Genoa (Italy), and [39], [40] jointly with L. Sharifan, University of Teheran (Iran).
We refer to these papers for more details and complete proofs.

We present here several examples, all performed using CoCoA [5].

1 Results, examples and problems on the Hilbert functions
of local rings

We start the presentation with an overview on some classical problems on the Hilbert Functions in
order to guide the reader in a possible route through this area of dynamic mathematical activity.
First we present a list of problems in the specific case of the m-adic filtration on a Cohen-Macaulay
local ring because also in this case too many interesting questions are still open. Later we will
extend the definitions to the more general setting of filtrations on a module.

Let (A,m, k) be a Noetherian local ring with maximal ideal m and infinite residue field k.
Denote by µ( ) the minimal number of generators of an ideal of A. The Hilbert function of A is,
by definition

HFA(n) := dimk mn/mn+1 = µ(mn)

for every n ≥ 0. Hence HFA is the Hilbert function of the homogeneous k-standard algebra

grm(A) = ⊕n≥0mn/mn+1

which is the associated graded ring of m. The graded algebra grm(A) corresponds to a relevant
geometric construction and it has been studied extensively. Namely, if A is the localization at the
origin of the coordinate ring of an affine variety V passing through 0, then grm(A) is the coordinate
ring of the tangent cone of V , which is the cone composed of all lines that are limiting positions
of secant lines to V in 0. The Proj of this algebra can also be seen as the exceptional set of the
blowing-up of V in 0.

The problems that I shall present here can be rephrased and extended to a related graded
k-standard algebra defined starting from any ideal I of A, the Fiber Cone of I

Fm(I) := ⊕n≥0In/mIn
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whose Hilbert function HFFm(I)(n) = µ(In) controls the number of generators of the powers of I.

By the Hilbert-Serre Theorem, the generating function of HFA is a power series HSA(z) =∑
n≥0HFA(n)zn which can be written as

HSA(z) =
hA(z)

(1− z)d

where hA(z) is a polynomial with integer coefficients such that hA(1) 6= 0 and d is the Krull dimen-
sion of A. For n � 0 HFA(n) agrees with a polynomial HPA(X) which has rational coefficients
and degree d− 1 and it is called the Hilbert polynomial of A. We can write

HPA(X) =

d−1∑
i=0

(−1)iei(m)

(
X + d− i− 1

d− i− 1

)
.

The integers e0(m), e1(m), . . . , ed−1(m) are uniquely determined by m and are known as the Hilbert
coefficients. In particular e0 is the multiplicity of A. Classically a related polynomial has been
introduced, the Hilbert-Samuel polynomial, that is λ(A/mn+1) for n� 0. It is denoted by HP 1

A(X)
and

HP 1
A(X) =

d∑
i=0

(−1)iei(m)

(
X + d− i
d− i

)
. (1)

If there is not confusion, we simply write ei instead of ei(m). We can prove that for every i ≥ 0

ei =
h
(i)
A (1)

i!

where 0! = 1 and h
(0)
A (1) = hA(1).

In the case of a k-standard graded algebra, the Hilbert function is well understood, at least in
the Cohen-Macaulay case. Instead, very little is known in the local case.

A result by Srinivas and Trivedi (see [47] and also [41]) says that the number of Hilbert
functions of a Cohen-Macaulay local rings with fixed dimension and multiplicity is finite, but the
problem concerning the characterization of the numerical functions which are admissible for a
Cohen-Macaulay local ring is widely open.

Due to this lack of information, a long list of papers have been written on the problem to find
constraints on the possible Hilbert functions of a Cohen-Macaulay local ring.

Assume (A,m) be Cohen-Macaulay local ring of dimension one of given embedding dimension
(= dimk m/m

2). J. Elias (see [9]) characterized the Hilbert-Samuel polynomials HP 1
A(X) = e0(X+

1)−e1 of A. It is clear that this result gives some information on the Hilbert functions. For example

it says that HS(z) = 1+z−z2
1−z is an admissible Hilbert series for a k-standard algebra of dimension

one, but it not the Hilbert series of a 1-dimensional Cohen-Macaulay local ring.
But the following problem is still open, even if we consider dim A = 1.

PROBLEM 1. Characterize the possible Hilbert functions of a Cohen-Macaulay local
ring of dimension one.

The question has a clear geometric meaning related to the singularities of the affine curves
which are arithmetically Cohen-Macaulay. From the algebraic point of view, the problem mainly
comes from the fact that the Cohen-Macaulyness of A (resp. Gorenstein, domain, ...) does not
imply grm(A) is Cohen-Macaulay (resp. Gorenstein, domain, ...).

Example 1.1. Consider the power series A = k[[t4, t5, t11]]. This is a one-dimensional local domain
and its associated graded ring is

grm(A) = k[x, y, z]/(xz, yz, z2, y4)
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which is not Cohen-Macaulay and the Hilbert series of A is

HSA(z) =
1 + 2z + z3

1− z

In fact A = k[[x, y, z]]/I where I = (x4 − yz, y3 − xz, z2 − x3y2) and hence grm(A) = k[x, y, z]/I∗

where I∗ = (xz, yz, z2, y4) is the ideal generated by the initial forms of the elements of I. In this
case dimA = dim grm(A) = 1, but depth grm(A) = 0.

Here if a ∈ A is a non-zero element and n is the greatest integer such that a ∈ mn we let

a∗ := a ∈ mn/mn+1

and call it the initial form of a in grm(A).

The problem is still open if we concentrate our interest to the complete intersections.

Example 1.2. Consider the coordinate ring A of the monomial curve parametrized by (t6, t7, t15).
The 1-dimensional local domain A is a complete intersection. In fact A = k[[x, y, z]]/I where
I = (y3 − xz, x5 − z2). Since I∗ = (xz, z2, y3z, y6), one has

HSA(z) =
1 + 2z + z2 + z3 + z5

1− z
.

In this case the associated graded ring is not Cohen-Macaulay. Notice that in the graded case the
Hilbert function of a complete intersection is always symmetric, it is no longer true in the local
case. The point is that even if A is Gorenstein, the associated graded ring can lose this property.

We say that the Hilbert function of A is not decreasing if

HFA(n+ 1) ≥ HFA(n)

for every n. Obviously the property is verified if grm(A) is Cohen-Macaulay, but this is not a
necessary requirement (see Examples 1.1 and 1.2). Unfortunately in the Cohen-Macaulay local
case it can happen that HFA(2) = µ(m2) < HFA(1) = µ(m). The first 1-dimensional examples
were given by Herzog and Waldi in 1975, by Eakin and Sataye in 1976. As far as I know, Molinelli
and Tamone in 1999 gave the following example which has multiplicity and embedding dimension
smaller than the previous examples. It is enough to consider

A = k[[t13, t19, t24, t44, t49, t54, t55, t59, t60, t66]].

In this case HFA(2) = 9 < HFA(1) = 10. It would be interesting to notice that the Hilbert function
is not decreasing if the multiplicity is smaller than µ(m)− d+ 4 and, in this case, the multiplicity
of A is µ(m) − d + 4 = 13. In 1980 Orecchia proved that, for all b ≥ 5, there exists a reduced
one-dimensional local ring of embedding dimension b and decreasing Hilbert function. Finally
P. Roberts in 1982 built ordinary singularities with decreasing Hilbert function and embedding
dimension at least 7.

J. Elias (see [10]) gave a positive answer to a problem stated by J. Sally by proving that the
Hilbert function of a Cohen-Macaulay local ring of dimension one and embedding dimension at
most three is not decreasing.

Several computations leads us to think that these pathologies do not appear if the local ring is
Gorenstein. Then we ask the following question:

PROBLEM 2. Is the Hilbert function of a Gorenstein local ring of dimension one not
decreasing?
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Very partial results have been proved in the case of a complete intersection. T. Puthenpurakal
gave a positive answer if A = k[[x, y, z, w]]/I where I is generated by a regular sequence of height
at most three.

Interesting problems also come from the Artinian case, under the assumption that A is Goren-
stein or, more in general, level.

Iarrobino (see [25]) proved a necessary (not sufficient) constraint on a numerical function for
being the Hilbert function of a Gorenstein Artinian local ring, but a complete characterization
for this class of rings is still an open problem, except for the case of codimension two.

In fact if we consider an Artinian local ring A = k[[x, y]]/I with Hilbert function HF =
{(1, 2, h2, . . . , hs)}, Macaulay, by using the device of the inverse system, proved that if I = (f, g)
is a complete intersection, then

|hi − hi+1| ≤ 1 for all i. (2)

In 1978 S.C. Kothari answered several questions raised by Abhyankar concerning the Hilbert func-
tion of a pair of plane curves and he proved the same result by studying the complicate structure
of I∗. Starting from the same point of view, recently S. Goto, W. Heinzer and M-K. Kim examined
the ideal I∗ of a complete intersection of height two and they reproved Macaulay’s result. Sev-
eral authors studied the variety parametrizing all height two ideals with a fixed Hilbert function,
among others J. Briancon, A. Iarrobino, Yameogo and Gottsche. In particular J. Briancon and A.
Iarrobino proved that (2) gives a complete characterization of the Hilbert functions of a Gorenstein
Artinian local ring of codimension two (complete intersections) and recently V. Bertella extended
the result to the Level Artinian rings.

In the last section we will present a short proof of Briancon-Iarrobino’s result as a consequence
of a different approach. In codimension three, we can state the following problem:

PROBLEM 3. Characterize the Hilbert functions of the Artinian local ring A =
k[[x, y, z]]/I where I = (F1, F2, F3) is generated by a regular sequence.

We will see that, for example, {(1, 3, 4, 4, 1, 1, 1)} is not the Hilbert function of a Gorenstein
Artinian local ring. Partial results will be presented later.

Due to the pioneering work by Northcott (see [28]) in the 60’s, several efforts have been made to
better understand the Hilbert function of a Cohen-Macaulay local ring, also in relation with the
Hilbert coefficients (asymptotic information) and the homological invariants of the corresponding
tangent cone. J. Sally carried on Northcott’s work (see [42], [43]) by proving interesting results and
asking as well as challenging questions. Several improvements along this line has been proved in the
last years (J.Elias, C. Huneke, S.Itoh, A. Ooishi, G. Valla, W. Vasconcelos, . . . ), often extending
the framework to the Hilbert functions associated to an m-primary ideal or, more in general, to a
filtration.

The first Hilbert coefficient, e0(m) or simply e, is the multiplicity and, due to its geometric
meaning, has been studied very deeply. The other coefficients are not as well understood, either
geometrically or in terms of how they are related to algebraic properties of the ideal or the ring.
Northcott proved that, if (A,m) is a Cohen-Macaulay local ring, then

e1 ≥ e− 1.

Thus, for example, the series 1+z−z2
1−z cannot be the Hilbert series of a Cohen-Macaulay local ring

of dimension one because e1 = 0, while e = 2. On the other hand, the above series is not admissible
for a local Cohen-Macaulay local ring also because does not verify Abhyankar’s bound. Abhyankar
(see [1]) proved that if A is Cohen-Macaulay

e ≥ h+ 1
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where h = µ(m)− d is the so-called embedding codimension of A (h ≥ 0 and h = 0 if and only A
is regular). In particular

e = h+ 1 + λ(m2/Jm) (3)

for every minimal reduction J of m. D.G. Northcott and J. Sally studied the minimal values of e
and e1 in terms of these invariants. We have

e = h+ 1 ⇐⇒ e1 = e− 1 ⇐⇒ HSA =
1 + hz

(1− z)d
⇐⇒ m2 = Jm (4)

for every minimal reduction J of m. If this is the case grm(A) is Cohen-Macaulay.
These results can be easily proved by using the device of the superficial elements (see Section 2).
S. Goto and K. Nishida (see [15]) have been able to extend Northcott’s bound to the case of an m-
primary ideal, avoiding the assumption that the ring is Cohen-Macayulay.

On the base of this result, A. Corso (see [5]) can handle in this wild generality a stronger upper
bound for e1 proved by J. Elias and G. Valla (see [11]) in the Cohen-Macaulay case.

The integer, e1, has been recently interpreted by C. Polini, B. Ulrich and W. Vasconcelos as a
tracking number of the Rees algebra of A in the set of all such algebras with the same multiplicity.
Under various circumstances, it is also called the Chern number or coefficient of the local ring A.
An interesting list of questions and conjectural statements about the values of e1 for filtrations
associated to an m-primary ideal of a local ring A have been presented in a paper by W. Vasconcelos
(see [51]). Relevant improvements have been recently proved by S. Goto, L. Ghezzi, J. Hong, K.
Ozeky, T.T. Phuong and W. Vasconcelos (see [13]).

In 1983 J. Sally (see [43]) conjectured that

e = h+ 2 =⇒ HSA(z) =
1 + hz + zs

(1− z)d

for some integer 2 ≤ s ≤ e− 1. Sally proved it in dimension one and, for every integer s, she gave
an example:

A2 = k[[te, te+1, te+3, . . . , t2e−1]]

As = k[[te, te+1, te+s+1, te+s+2, . . . , t2e−1, t2e+3, t2e+ 4, . . . , t2e+s]], 3 ≤ s ≤ e− 2

Ae−1 = k[[t2, te+1, t2e+3, t2e+4, . . . , t3e−1]].

After 13 years G. Valla and M.E. Rossi solved the conjecture (see [34]). Their proof deeply
involved the use of the Rattlif-Rush filtration. H.S. Wang presented a different proof in [53] which
involves a technical study of graded diagonals of the Sally module. Sally’s conjecture can be proved
by reducing the problem to dimension two. While the proof in the one-dimensional case is quite
easy, the proof in dimension two is very complicated. Several authors generalized the result to a
more general setting (S. Huckaba, A. Corso, C. Polini and M. Vaz Pinto, J. Elias, M.E. Rossi and
G. Valla) but always using the devices of the original proof of G. Valla and M.E. Rossi.

If e = h+ 3 and A is Gorenstein, J. Sally proved that

HSA(z) =
1 + hz + z2 + z3

(1− z)d

and grm(A) is Cohen-Macaulay.
G. Valla and M.E. Rossi characterized the admissible Hilbert functions for a one-dimensional

Cohen-Macaulay ring with multiplicity e = h+ 3 (see [36]). Moreover they reproved Sally’s result
and they showed that

τ < h =⇒ HSA(z) =
1 + hz + zt + zs

(1− z)d
where 2 ≤ t ≤ s ≤ e− 1
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where τ is the Cohen-Macaulay type of A. If this is the case depthgrm(A) ≥ d− 1.

The following example given by H.S. Wang shows that the above result on the depth of grm(A)
is no longer true if τ is almost maximal, i.e. τ = h, h+ 1 (τ ≤ h+ 1).

Example 1.3. Let (A,m) be the two dimensional local Cohen-Macaulay ring

k[[x, y, t, u, v]]/(t2, tu, tv, uv, yt− u3, xt− v3),

Let m be the maximal ideal of A. One has e = h + 3 = 6, the associated graded ring grm(A) has
depth zero and

HSA(z) =
1 + 3z + 3z3 − z4

(1− z)2
.

In the previous example depth grm(A) = d − 2 = 0. On the analogy with the previous case
(e = h+ 2), it is natural the following problem:

PROBLEM 4. Let A be a Cohen-Macaulay local ring with e = h+ 3. Is depth grm(A) ≥
d− 2 ?

In the classical case of a Cohen-Macaulay local ring A, as far as the higher Hilbert coefficients
are concerned, it is a result of M. Narita (see [27]) and J. Sally (see [44]) that

e2 ≥ e1 − e+ 1 ≥ 0. (5)

If e2 = 0, Narita proved that grm(A) is Cohen-Macaulay and, for large n, mn has reduction number
one. Unfortunately if the first equality holds, we cannot deduce that the associated graded ring is
Cohen-Macaulay or of almost maximal depth. In Example 1.3, A is a Cohen-Macaulay local ring
of dimension 2, e2 = e1 − e+ 1, but depth grm(A) = 0. In general, it seems that the the normality
of the ideal m yields non trivial consequences on the Hilbert coefficients of A and, ultimately, on
depth grm(A) and the Hilbert function A. Corso, C. Polini and M.E. Rossi in [6] proved that

m normal, e2 = e1 − e+ 1 =⇒ HSA(z) =
1 + hz + (e− h− 1)z2

(1− z)d
and m3 = Jm2

for every minimal reduction J of m and hence grm(A) is Cohen-Macaulay. This result gave a
positive answer to a question raised by G. Valla in [50]. The key point is a theorem by Itoh on the
normalized Hilbert coefficients of ideals generated by a system of parameters.

On the analogy of the extension of Northcott’s result (due to S. Goto and K. Nishida), it would
be interesting to introduce a correction term for e2 in order to extend (5) to any local ring, not
necessarily Cohen-Macaulay.

Unfortunately, the positivity of the Hilbert coefficients stops with e2. Indeed, M. Narita showed
that e3 can be negative (see also Example 1.3). However, a remarkable result of S. Itoh says that
e3 ≥ 0 provided m is normal (see [26]). If the equality holds, then grm(A) is Cohen-Macaulay. A
nice proof of this result was also given by S. Huckaba and C. Huneke. We do not know if Itoh’s
result holds if we consider the q-adic filtration where q is an m-primary ideal. As far I know there
are not negative answers to the following natural question.

PROBLEM 5. Does m normal imply ei ≥ 0 for every i ?

The previous problem is related to the asymptotic behavior of the associated graded ring of the
powers of the maximal ideal and it has some relation with the Grauert-Riemenschneider vanishing
theorem.
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Another relevant interest goes toward the study of the reduction number. As we can realize in
(3) and (4), there is a relationship between Hilbert functions and minimal reductions. Let J be a
minimal reduction of m, we recall that the reduction number w.r.t. J is defined by

rJ(m) := min{r ∈ N : mr+1 = Jmr}

We can easily prove that if rJ(m) ≤ 2 for some minimal reduction J, then the Hilbert function is
known

HSA(z) =
1 + hz + (e− h− 1)z2

(1− z)d
.

Also the converse holds, that is the shape of the previous Hilbert series forces rJ(m) ≤ 2 for every
J and hence grm(A) to be Cohen-Macaulay. This had been proved by J. Elias and G. Valla in [11].

If dim A = 1, or more in general if depth grm(A) ≥ d−1, then rJ(m) ≤ e−1 for every minimal
reduction J.

If dim A ≤ 2, or more in general if depth grm(A) ≥ d− 2, M.E. Rossi in [35] proved that

rJ(m) ≤ e1 − e+ 2

It is natural to wonder if, given a Cohen-Macaulay local ring (A,m) of dimension d, does exist a
linear function f(e0, e1, . . . , ed−1, d) and a minimal reduction J such that

rJ(m) ≤ f(e0, e1, . . . , ed−1, d).

The study of the reduction number w.r.t. a minimal reduction J, led W. Vasconcelos to enlarge the
list of the blowup algebras by introducing the Sally module SJ(m) = ⊕mn+1/Jnm. Some results
on the Sally module will be presented in Section 3.

2 Basic facts and bounds on the first Hilbert coefficient of
filtered modules

We remark that the graded algebra grm(A) can also be seen as the graded algebra associated to
a filtration of the ring itself, namely the m-adic filtration {mj}j≥0. This gives an indication of a
possible natural extension of the theory to general filtrations of a finite module over the local ring
(A,m). The extension of the classical theory to general filtrations of a module, besides an intrinsic
interest, has one more relevant motivation. In the next section we will show as the theory of the
Hilbert function of filtered modules provides results on blowing-up algebras, as the Fiber Cone and
the Sally module, without further efforts.

We shall present some basic facts, in particular the notion of superficial element will be a
fundamental tool in our approach. The definition was given in Zariski- Samuel, pg.285 where it
is shown how to use this concept for devising proofs by induction on the dimension. We will care
only of the purely algebraic meaning of this notion, even if superficial elements play a relevant role
also in Singularity theory, as shown by Bondil and Le Dung Trang (see [2]).

We will show how this approach works in proving suitable extensions of two classical bounds
on the first Hilbert coefficient: the lower bound by Northcott and an upper bound by Huckaba, see
[28], [21]. We refer to [38] for further results on Hilbert coefficients, always by using this approach.

Let A be a commutative noetherian local ring with maximal ideal m and let M be a finitely
generated A-module. Let q be an ideal of A; a q-filtration M of M is a collection of submodules
Mj such that

M = M0 ⊇M1 ⊇ · · · ⊇Mj ⊇ · · · .
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with the property that qMj ⊆ Mj+1 for j ≥ 0. We consider a good q-filtration of M. This means
that Mj+1 = qMj for all large j. A good q-filtration is also called a stable q-filtration.
For example, the q−adic filtration on M defined by Mj := qjM is clearly a good q-filtration.

Several problems we have discussed in Section 1. can be properly rephrased in this general
setting, replacing A by M, the m-adic filtration {mj} by {Mj} a good q-filtration on M .

If N is a submodule of M , it is clear that {(N + Mj)/N}j≥0 is a good q-filtration of M/N
which we denote by M/N.

Given the good q-filtration M on M we let grq(A) := ⊕j≥0qj/qj+1, grM(M) := ⊕j≥0Mj/Mj+1.
We know that grM(M) is a graded grq(A)-module; further each element a ∈ A has a natural image
a∗ in grq(A) which is 0 if a = 0, is a∗ = a ∈ qt/qt+1 if a ∈ qt \ qt+1.

From now on we shall require the assumption that the length of M/qM , which we denote by
λ(M/qM), is finite. In this case there exists an integer s such that msM ⊆ (q+(0 :A M))M, hence
the ideal q + (0 :A M) is primary for the maximal ideal m. Also the length of M/Mj is finite for
all j ≥ 0. In this setting the Hilbert function of the filtration M is the numerical function

HFM(j) := λ(Mj/Mj+1).

As in Section 1. we denote by ei(M) the Hilbert coefficients of M coming from the corresponding
Hilbert polynomial HPM(X). We denote by HSM(z) the Hilbert series.

The Hilbert coefficient e0 is the multiplicity of M; we know that (see Bruns-Herzog’s book,
Proposition 11.4)

e0(M) = e0(N) (6)

for every couple of good q-filtrations. Also, if M is Artinian, then e0(M) = λ(M).
If we consider the classical q-adic filtration on A, we will denote the Hilbert coefficients by ei(q).

We recall the main tools we will use later:

• Valabrega-Valla criterion: given the ideal I = (a1, . . . , ar) in A with ai ∈ q \ q2, the elements
a∗1, . . . , a

∗
r form a regular sequence on grM(M) if and only if they form a regular sequence on M

and IM ∩Mj = IMj−1 for every j ≥ 1.
• M-superficial elements: an element a ∈ q is called M-superficial for q if there exists a non-

negative integer c such that
(Mj+1 :M a) ∩Mc = Mj

for every j ≥ c. If we assume that M has positive dimension, then every superficial element a for
q has order one, that is a ∈ q \ q2. Further, since we are assuming that the residue field A/m is
infinite, it is well known that superficial elements do exist. Moreover, if q is m-primary, then any
superficial element a ∈ q \ qm, hence it is part of a minimal system of generators of q.

The obstacle to finding superficial sequences is that one needs to check the previous relations
for all large n. We can circumvent this by using the equivalent notion of filter-regular sequence in
grM(M). In particular an element a ∈ q is M-superficial for q if and only if a ∈ q \ q2 and a∗ is a
filter regular element on grM(M).

We present useful properties of the superficial elements. In the following let a be an M-
superficial element for q and let d be the dimension of M. We have

a) dim(M/aM) = d− 1

b) a M -regular ⇐⇒ depth M > 0

c) j ≥ 1, depth M/aM ≥ j ⇐⇒ depth M ≥ j + 1

d) a∗ grM(M)-regular ⇐⇒ depth grM(M) > 0
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e) Sally’s machine: depth grM/aM (M/aM) ≥ 1 ⇐⇒ depth grM(M) ≥ 2

f) ej(M) = ej(M/aM) for every j = 0, . . . , d− 2

g) ed−1(M/aM) = ed−1(M) + (−1)d−1λ(0 :M a)

h) a∗ is a regular element on grM(M) if and only if HSM(z) =
HSM/aM (z)

1−z if and only if a is
M -regular and ed(M) = ed(M/aM)

Assume depth M > 0, then a ∈ q is M-superficial for q if and only if ej(M) = ej(M/aM) for every
j = 0, . . . , d− 1.

The above properties can be easily proved by the definition of superficial element and by the
following result. It is the so called Singh’s formula because the corresponding equality in the
classical case was obtained by B.Singh (see [46]).

Lemma 2.1. Let a ∈ q; then for every j ≥ 0 we have

HFM(j) =

j∑
n=0

HFM/aM (n)− λ(Mj+1 : a/Mj).

It is a nice consequence of this module-theoretic approach to remark that if M and N are two
q-filtrations on the same module M, then there exists an element a ∈ q which is superficial for
both.

In fact it is enough to consider the filtered module M ⊕M endowed with the q-filtration M⊕N
and to remark that a is superficial for this filtration if and only if a is superficial for both M and N
(this remark is due to D. Conti). As a consequence we deduce that, if the residue field is infinite,
we can always find an element a ∈ q which is superficial for a finite number of q-filtrations on M.

Assume dim M ≥ 2, by using f), g) and the above fact, we can easily prove that if M and N
are two q-filtrations on the same module M, there exists an element a ∈ q superficial for M and N
such that:

e1(M)− e1(N) = e1(M/aM)− e1(N/aM) (7)

The above property will be useful for proving results on e1 by induction on the dimension of M.

Assume dimM = d > 0 and denote by H0
m(M) the 0−th local cohomology with respect

to the maximal ideal m of A. An usual trick in reducing the problems to positive depth is the
following. Given a good q-filtration M = {Mn}n≥0 of the d-dimensional module M, we introduce
the corresponding filtration of the satureted module Msat = M/H0

m(M) and we denote

Msat := M/H0
m(M) = {Mn +H0

m(M)/H0
m(M)}n≥0.

In particular Msat is a good q-filtration and e0(Msat) = e0(M). If a ∈ q is an M-superficial element
for q, then a ∈ q is an Msat-superficial element for q.

We can relate the Hilbert coefficients of the filtrations M and Msat.

Proposition 2.2. Let M be a good q-filtration of the module M and W := H0
m(M). Then

ei(M) = ei(Msat) 0 ≤ i ≤ d− 1, ed(M) = ed(Msat) + (−1)dλ(W ).

A sequence of elements a1, . . . , ar will be called a M-superficial sequence for q if for every j =
1, . . . , r the element aj is an (M/(a1, . . . , aj−1)M)-superficial element for q.

Let a1, . . . , ad an M-superficial sequence for q, then

Mn+1 = JMn for n� 0. (8)

9



where J = (a1, . . . , ad). In particular M is also a good J-filtration. The above equality says that J
is a M-reduction of q.

If q is m-primary and the residue field is infinite, there is a complete correspondence between
maximal M-superficial sequences for q and minimal M-reductions of q (see for example [23]). Every
minimal M-reduction J of q can be generated by a maximal M-superficial sequence, conversely the
ideal generated by a maximal M-superficial sequence is a minimal M-reduction of q.

Notice that if q = (x7, x6y, x3y4, x2y5, y7) in k[[x, y]], then J = (x7, y7) is a minimal reduction
of q, but {x7, y7} is not a superficial sequence. We can verify that {x7 + y7, y7} is a superficial
sequence for q.

Given a good q-filtration M of the module M of dimension d, let a1, . . . , ad be an M-superficial
sequence for q. We denote by J the ideal they generate and consider the J-adic filtration of the
module M . This is by definition the filtration

N := {JjM}j≥0

which is clearly a good J-filtration. By (8) M is also a good J-filtration, so that, by (6), e0(M) =
e0(N).

In the case M is Cohen-Macaulay, the elements a1, . . . , ad form a regular sequence on M so

that J iM/J i+1M ' (M/JM)(
d+i−1

i ). It implies that the Hilbert Series of N is HSN(z) = λ(M/JM)
(1−z)d

and thus ei(N) = 0 for every i ≥ 1. This proves that these integers give a good measure of how M
differs from being Cohen-Macaulay. In the case M = A, Vasconcelos conjectured that if A is not
Cohen-Macaulay, then e1(J) < 0 for large classes of local rings.

The integer e1(J) is exactly the correction term that S. Goto and K. Nishida introduced in [15]
getting free of the Cohen-Macaulyness of A.

If M is a generalized Cohen-Macaulay module of dimension ≥ 2, then

e1(N) ≥ −
d−1∑
i=1

(
d− 2

i− 1

)
λ(Hi

m(M))

with equality if M is Buchsbaum. This is due to Stuckrad and Vogel. S. Goto and K. Nishida
proved the following result (see [15]).

Lemma 2.3. Let M be a finitely generated A-module of dimension one and let a be a parameter
for M. Then for every t >> 0 we have H0

m(M) = 0 :M at and, if we denote by N the (a)-adic
filtration on M, λ(H0

m(M)) = −e1(N).

Proof. Since there is an integer j such that mjM ⊆ aM = ((a) + 0 : M)M , the ideal (a) + 0 : M
is m-primary and therefore ms ⊆ (a) + 0 : M for some s; this implies

mts ⊆ (a)t + 0 : M

for every t. On the other hand, W = 0 :M mt for every integer t >> 0, so that

W = 0 :M mt ⊆ 0 :M at ⊆ 0 :M mts = W.

We denote by Nn the (an)-adic filtration on M. Now for n � 0, it is easy to see that ne0(N) =
e0(Nn) = λ(M/anM)− λ(0 :M an) and the result follows because λ(M/anM) = ne0(N)− e1(N).

By using the previous fact we can prove the following results:

Theorem 2.4. Let M be a good q-filtration of a module M of dimension d and let J be an ideal
generated by a maximal sequence of M-superficial elements for q; then we have

e1(M)− e1(N) ≤
∑
j≥0

λ(Mj+1/JMj).
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In the classical case, when M = A is Cohen-Macaulay and M = {qj}, the above inequality
is due to S. Huckaba (see [21]). He also proved that equality holds if and only if the associated
graded ring has depth at least d− 1. We will extend this result in Theorem 2.10.

By using the same strategy we improve Northcott’s inequalty for filtrations on a module
which is not necessarily Cohen-Macaulay.

Theorem 2.5. Let M = {Mj}j≥0 be a good q-filtration of a module M of dimension d and let J
be an ideal generated by a maximal M-superficial sequence for q. For every integer s ≥ 1 we have

e1(M)− e1(N) ≥ s e0(M)− λ(M/Ms−1)− λ(M/Ms + JM).

Remark 2.6. Let us apply the above theorem in the very particular case when Mj = qj for every
j ≥ 0 and q is a primary ideal of A.

• s = 1
e1(q)− e1(J) ≥ e0(q)− λ(A/q)

which is exactly a result proved by S. Goto and K. Nishida. If A is Cohen-Macaulay, then we get
Northcott’s bound e1(q) ≥ e0(q) − λ(A/q). Moreover if q = m then we have e1(m) ≥ e0(m) − 1
already discussed in the previous section.

• s = 2

e1(q)− e1(J) ≥ 2e0(q)− λ(A/q)− λ(A/q2 + J).

This is a result recently proved by A. Corso (see [5]) and, if A is Cohen-Macaulay, by J. Elias and
G. Valla (see [11]).

The good behaviour of the superficial elements leads us to prove Theorems 2.4 and 2.5 by
induction on the dimension of M. It will be useful to remark that, since M and N are good J-
filtrations, we may find a1, . . . , ad−1 in J superficial for both filtrations. Hence, by (7), we get

e1(M)− e1(N) = e1(M/(a1, . . . , ad−1)M)− e1(N/(a1, . . . , ad−1)M).

Now M/(a1, . . . , ad−1)M is a 1-dimensional module. For this reason we need an ad hoc treat-
ment of the one dimensional case.

Assume dimM = 1, then the module M/H0
m(M) is Cohen-Macaulay and, by Lemma 2.3 and

Proposition 2.2, we have
e1(M)− e1(N) = e1(Msat) (9)

where N is the (a)-adic filtration on M for any M-superficial element a for q. The above equality
reduces the problem to a Cohen-Macaulay module of dimension one.

Let M be a Cohen-Macaulay module of dimension one endowed with the good q-
filtration M. We know that, in this case, for large n we have e0(M) = HFM(n) = λ(M/aM) where
a is an M-superficial element for q. Let j ≥ 0, from the diagram

M ⊃ Mj+1

∪ ∪
aM ⊃ aMj

we deduce
HFM(j) = e0(M)− vj(M) (10)
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where vj(M) = λ(Mj+1/aMj). It is clear that vj(M) = 0 for j � 0. Starting from (10), we can
compute the Hilbert series of M

HSM(z) =
e0 − v0(M) +

∑
j≥0(vj(M)− vj+1(M))zj+1

(1− z)

Hence in the 1-dimensional Cohen-Macaulay case

ei(M) =
∑
j≥i−1

(
j

i− 1

)
vj(M) (11)

for every i ≥ 1.

In order to prove Theorems 2.4 and 2.5, it will be crucial to prove the following results in
dimension one.

Proposition 2.7. Let M be a good q-filtration of a module M of dimension one, let a be an
M-superficial element for q and N the (a)-adic filtration on M. Then

e1(M)− e1(N) ≤
∑
j≥0

λ(Mj+1/aMj).

If H0
m(M) ⊆M1, the equality holds if and only if M is Cohen-Macaulay.

Proof. We have e1(Msat) =
∑
j≥0 λ(Msat

j+1/aM
sat
j ). Denote W = H0

m(M), now

λ(Msat
j+1/aM

sat
j ) = λ(Mj+1/aMj +Mj+1 ∩W ) ≤ λ(Mj+1/aMj)

and the result follows by (9). The equality holds if and only if Mj+1 ∩W ⊆ aMj for every j ≥ 0.
If M is Cohen-Macaulay then e1(N) = 0 and the result follows by (11). Hence we prove now that
if W ⊆M1 and the equality holds, then W = 0. We know that Mj+1 ∩W ⊆ aMj for every j ≥ 0,
in particular M1 ∩W = W ⊆ aM. Since W = 0 :M at for t� 0, it is easy to see that W ⊆ aW. In
fact if c ∈W, then c ∈ a(0 :M at+1) = aW. Hence by Nakayama W = 0, as wanted.

Concerning the extension of Northcott’s result the crucial point will be the following:

Proposition 2.8. Let M = {Mj}j≥0 be a good q-filtration of a module M of dimension one and
let a be an M-superficial element for q. Then for every integer s ≥ 1 and for every n� 0 we have

e1(M)− e1(N) = s e0(M)− λ(M/Ms) + λ(Ms +H0
m(M)/Ms) + λ(Mn/a

n−sMs).

Proof. We have for every n� 0 the following equalities:

λ(M/Mn) = HP 1
M(n− 1) = e0(M)n− e1(M)

λ(M/an−sM) = HP 1
N(n− s− 1) = e0(N)(n− s)− e1(N).

Since e0(M) = e0(N) , we get

e1(M)− e1(N) = s e0(M)− λ(M/Mn) + λ(M/an−sM).

From the diagram
M ⊃ Mn

∪ ∪
an−sM ⊃ an−sMs

we get
e1(M)− e1(N) = s e0(M) + λ(Mn/a

n−sMs)− λ(an−sM/an−sMs).
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By using the exact sequence

0→ (Ms + 0 :M an−s/Ms)→M/Ms
an−s

→ an−sM/an−sMs → 0

and the equality 0 :M at = H0
m(M) for t >> 0, we get the conclusion.

We omit here the complete proof of Theorems 2.4 and 2.5 since they are now easy consequences
of Propositions 2.7, 2.8 and (7).

If M is Cohen-Macaulay, then e1(N) = 0, hence the bound of Theorem 2.4 can be refined.
Hence, by the properties of the superficial elements we can prove the following result (see [38] for
more details) already proved by S. Huckaba and T. Marley for ideal filtrations.

Theorem 2.9. Let M = {Mj}j≥0 be a good q-filtration of the Cohen-Macaulay module M of
dimension d ≥ 1 and let J be an ideal generated by a maximal sequence of M-superficial elements
for q. Then we have

e1(M) ≤
∑
j≥0

vj(M)

The following conditions are equivalent

1. depth grM(M) ≥ d− 1.

2. e1(M) =
∑
j≥0 vj(M).

3. HSM(z) =
e0(M)−v0(M)+

∑
j≥0(vj(M)−vj+1(M))zj+1

(1−z)d .

Consider M = A and M the m-adic filtration on A. If we do not assume A is Cohen-Macaulay,
surprisingly, the equality in Theorem 2.4 forces the ring A itself to be Cohen-Macaulay. By using
Proposition 2.7, Theorem 2.9 and c), e) among the properties of the superficial elements, we can
prove the following result.

Theorem 2.10. Let (A,m) be a local ring of dimension d ≥ 1 and let J be the ideal generated by
a maximal m-superficial sequence. The following conditions are equivalent:

1. e1(m)− e1(J) =
∑
j≥0 vj(m).

2. A is Cohen-Macaulay and depth grm(A) ≥ d− 1.

3 Applications to the Sally module and to the Fiber Cone

We show that the Fiber cone Fm(q) and the Sally-module SJ(q) of an m-primary ideal q fit into
suitable short exact sequences, together with algebras associated to filtrations. The aim of this
section is to take advantage of this for giving shorter proofs of selected results of the recent litera-
ture. We can study the Hilbert function and the depth of these algebras by using the knowledge
and the methods already developed in Section 2.

The Fiber Cone
Let (A,m) be a commutative local ring of dimension d and let q be an ideal of A. We define

the graded grq(A) = ⊕n≥0qn/qn+1-module

Fm(q) = ⊕n≥0qn/mqn

which is called the Fiber cone of q. It coincides with grm(A) in the case q = m.
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This graded object encodes several information on q. For instance, its dimension coincides with
the minimal number of generators of any minimal reduction of q, that is the analytic spread of q
and its Hilbert function controls the minimal number of generators of the powers of q.

Usually the arithmetical properties of the Fiber cone and those of the associated graded ring
have been studied apparently with different approaches. The literature concerning the associated
graded rings is much more rich, but new and peculiar tecniques had been necessary in order to
study several problems on the Fiber cone.

Papers by T. Cortadellas and S. Zarzuela (see [7]) proved the existence of an exact sequence of the
homology of modified Koszul complexes, relating Fm(q) with the associated graded modules to the
q-adic filtration and the q-good filtration

F := {mqn} : A ⊇ m ⊇ mq ⊇ mq2 ⊇ . . .

But this idea has not been exploited so deeper. Starting from their work, G. Valla and myself have
developed this strategy.

First we prove some results concerning the depths of Fm(q), grq(A) and grF(A). Since the
involved objects are graded modules on grq(A), the depths are computed with respect to Q =
⊕n>0q

n/qn+1.

Proposition 3.1. We have the following homogeneous exact sequences of grq(A)-graded modules:

0→ N → grq(A) −→ Fm(q)→ 0

0→ Fm(q)→ grF(A) −→ N(−1)→ 0

where N = ⊕n≥0mMn/Mn+1. Let p be an integer, we have

1. depth Fm(q) ≥ min{depth grq(A) + 1,depth grF(A)}

2. If min{depth grq(A), depth Fm(q)} ≥ p, then depth grF(A) ≥ p.

3. If min{depth grF(A), depth Fm(q)} ≥ p, then depthgrq(A) ≥ p− 1.

Proof. It is enough to remark that we have the exact sequences of the corresponding homogeneous
parts of degree n of the involved graded algebras. Then the information on depths comes from
“depth’s formula”.

Several examples show that Fm(q) can be Cohen-Macaualy even if grq(A) is not Cohen-
Macaulay and conversely. The above proposition clarifies the intermediate role of the graded
module associated to the filtration F.

It will be important to remind that, as we have seen, it is possible to find a superficial sequence
a1, . . . , ar in q which is both superficial for the q-adic filtration and F-superficial for q.

As a consequence of the above proposition, immediately we reprove several results which are
known in the literacture. The following result was already proved by K. Shah and by several other
authors by different methods. We give here a short proof.

Theorem 3.2. Let q be an ideal of a local ring (A,m) and let J be an ideal generated by a superficial
regular sequence for q such that q2 = Jq. Then Fm(q) is Cohen-Macaulay.

Proof. By using the assumption, we get that qn+1 ∩ J = Jqn and mqn+1 ∩ J = Jmqn for every
integer n. By Valabrega-Valla criterion it follows that the filtrations {qn} and {mqn} on A have
associated graded ring of depth at least µ(J) =dim Fm(q). The result follows now by Proposition
3.1. (1.).

For every ideal q 6= 0, we may define the numerical function

HFFm(q)(n) := dimk(qn/mqn) = µ(qn)
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which is the Hilbert function of Fm(q). As usual we denote by HSFm(q)(z) its generating Hilbert
series.

We remark that, under the assumptions of Theorem 3.2, we can easily write the Hilbert series
of Fm(q) which is a standard graded k-algebra. In fact

HSFm(q)(z) =
1

(1− z)d
HSFm(q)/JFm(q)(z) =

1

(1− z)d
s∑
i≥0

λ(qi/Jqi−1 + mqi)zi

Since q2 = Jq and λ(q/J + mq) = µ(q)− d, one has

HSFm(q)(z) =
1 + (µ(q)− d)z

(1− z)d
.

From now on assume that q is m-primary, then dimFm(q) = d = dimA. We recall that
HFFm(q)(n) is a polynomial function and the corresponding polynomial HPFm(q)(X) has degree
d− 1. It is the Hilbert polynomial of Fm(q) and, as usual, we can write

HPFm(q)(X) =

d−1∑
i=0

(−1)ifi(q)

(
X + d− i− 1

d− i− 1

)
.

The coefficients fi(q) are integers and they are called the Hilbert coefficients of Fm(q). In particular
f0(q) is the multiplicity of the fiber cone. We remark that A.V. Jayanthan and J. Verma introduced
different coefficients for Fm(q) (called gi(q)), obtained by splitting the Hilbert polynomial of grF(A)
with respect to a special basis. Similar results can be obtained in this case (see [38] for results
concerning the g′is).

From the exact sequences, we can relate the Hilbert function of Fm(q) with those of the asso-
ciated graded rings grq(A) and grF(A). Since e0(q) = e0(F), a computation shows that

fi−1(q) = ei(q) + ei−1(q)− ei(F) (12)

for every i = 1, . . . , d.

It is clear now that the theory developed on the Hilbert coefficients of the graded module
associated to a good filtration on A can be applied to ei(q) and ei(F) in order to get information,
through (12), on the coefficients of the Fiber cone of q. We present here a couple of results which
have been obtained in the literature by different methods. The following is an extension to modules
of a recent result by A. Corso (see [5]).

Theorem 3.3. Let q be an m-primary ideal of a local ring (A,m) of dimension d. Let J be the
ideal generated by a maximal superficial sequence for q, then

f0(q) ≤ min{e1(q)− e0(q)− e1(J) + λ(A/q) + µ(q)− d+ 1, e1(q)− e1(J) + 1}.

Proof. Since f0(q) = e0(q) + e1(q)− e1(F) by (12), it is enough to apply Theorem 2.5 to e1(F) for
s = 1, 2.

If A is Cohen-Macaulay, then e1(J) = 0 because J is generated by a regular sequence and we
are able to control the extremal cases. By using our approach we can reprove the following result
by A. Corso, C. Polini and W. Vasconcelos (see [4]).
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Corollary 3.4. Let q an m-primary ideal of a local Cohen-Macaulay ring (A,m) of dimension d.
Then

f0(q) ≤ e1(q)− e0(q) + λ(A/q) + µ(q)− d+ 1 ≤ e1(q) + 1.

In particular

1. If f0(q) = e1(q) + 1, then mq = mJ for every maximal superficial sequence J for q. If, in
addition, λ(q2 ∩ J/Jq) ≤ 1 for some J, then depth grq(A) ≥ r − 1 and Fm(q) is Cohen-Macaulay.

2. If f0(q) = e1(q)− e0(q) + λ(A/q) + µ(q)− r + 1, then Fm(q) is unmixed.

Proof. The first inequality follows by Theorem 3.3. We prove now that e1(q) − e0(q) + λ(A/q) +
ν(q) − r + 1 ≤ e1(q) + 1. Indeed, if J is an ideal generated by a maximal superficial sequence for
q, then e0(q)− λ(A/q)− ν(q) + r = λ(q/J)− λ(q/qm) + λ(J/Jm) = λ(q/Jm)− λ(q/qm) ≥ 0.

If f0(q) = e1(q) + 1, it turns out qm = Jm and hence the associated graded module to the
filtration F = {mqn} is Cohen-Macaulay by Valabrega-Valla criterion. Now q2 ⊆ mq = mJ ⊆ J,
then λ(q2∩J/Jq) = λ(q2/Jq) ≤ 1. Hence by Corollary 1.7 in [35], it is known that depth grq(A) ≥
d− 1 and 1. follows by Proposition 3.1.

Now, from the proof of Theorem 3.3, f0(q) = e1(q)− e0(q) + λ(A/q) + ν(q)− r+ 1 if and only
if e1(F) = 2e0(q) − 1 − λ(A/mq + J) (equality in Northcott’s bound with s = 2) and hence, by a
result by J.Elias and G. Valla in [11] stated for filtration, grF(A) is Cohen-Macaulay. Because we
have a canonical injective map from Fm(q) to grF(A) the result follows.

Notice that the assumption λ(q2 ∩ J/Jq) ≤ 1 is satisfied for instance if A is Gorenstein.

The Sally module
Given an m-primary ideal q in the local ring (A,m) and a minimal reduction J of q, W.

Vasconcelos introduced the so-called Sally module SJ(q) of q with respect to J. It is a R(J) =
⊕iJ i-module defined by the exact sequence

0→ qA[Jt]→ qA[qt]→ SJ(q) = ⊕n≥1qn+1/Jnq→ 0.

Assume q is m-primary, the Hilbert function of this graded module is

HFSJ (q)(n) := λ(qn+1/Jnq),

and its Hilbert series is HSSJ (q)(z) =
∑
n≥1 λ(qn+1/Jnq)zn. We write ei(SJ(q)) the corresponding

Hilbert coefficients. W. Vasconcelos and M. Vaz Pinto proved that if A is Cohen-Macaulay, then

e0(SJ(q)) ≤
∑
j≥1

λ(qj+1/Jqj)(= vj(q))

and equality holds if and only if depth grq(A) = ⊕n≥0qn/qn+1 ≥ d− 1.

As an application of the results of Section 2., in this section we extend the above inequality
without assuming the Cohen-Macaulayness of A and we study the extremal case.

Let M be a good q-filtration of the A-module M of dimension d and let J be the ideal generated
by a maximal M-superficial sequence for q. We consider the filtration

E := A ⊇ q ⊇ Jq ⊇ J2q ⊇ · · · ⊇ Jnq ⊇ . . .

which is a good J-filtration with the nice property that En+1 = JEn for all n ≥ 1. Then SJ(q) is
related to grq(A) and grE(A) (graded A[Jt]-modules) by the following two short exact sequences:

0→ Jn−1q/Jnq→ qn/Jnq→ qn/Jn−1q→ 0
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0→ qn+1/Jnq→ qn/Jnq→ qn/qn+1 → 0.

Since qn/Jn−1q = (SJ(q)(−1))n, by standard facts it follows that

depth grq(A) ≥ min{depth SJ(q)− 1,depth grE(A)} (13)

Moreover we get HSSJ (q)(−1)(z) +HSE(z) = HSq(z) +HSSJ (q)(z) so that

(z − 1)HSSJ (q)(z) = HSq(z)−HSE(z) (14)

We deduce that dimSJ(q) = d if and only if e1(q) > e1(E). If dimSJ(q) = d, then for every
i ≥ 0 we have

ei(SJ(q)) = ei+1(q)− ei+1(E) (15)

Now, if we apply Theorem 2.5 with M = E and s = 1, we get

e1(E)− e1(J) ≥ e0(q)− λ(A/q),

then
e0(SJ(q)) = e1(q)− e1(E) ≤ e1(q)− e1(J)− e0(q) + λ(A/q). (16)

Notice that the above inequality has been recently proved by A. Corso (see [5]) and it extends a
result proved by W. Vasconcelos in the Cohen-Macaulay case (e1(J) = 0).

In (16) we can bound e1(q) by Theorem 2.4 and we get

e0(SJ(q)) ≤
∑
j≥0

vj(q)− e0(q) + λ(A/q). (17)

The equality holds if and only if

We prove the following result which completes Theorem 2.10.

Theorem 3.5. Let (A,m) be a local ring of dimension d ≥ 1 and let J be an ideal generated by
a maximal m-superficial sequence. If dimSJ(m) = d, then e0(SJ(m)) ≤

∑
j≥0 vj(m) − e0(m) + 1.

Moreover the following conditions are equivalent:

1. e0(SJ(m)) =
∑
j≥0 vj(m)− e0(m) + 1

2. e1(m)− e1(J) =
∑
j≥0 vj(m)

3. A is Cohen-Macaulay and depth grm(A) ≥ d− 1.

Proof. In (17) the equality holds if and only if e1(q) − e1(J) =
∑
j≥0 vj(q). Hence, in the case of

the m-adic filtration on A, by Theorem 2.10, the equality is equivalent to have A Cohen-Macaulay
and depth grm(A) ≥ d− 1.

The following result completes Theorem 3.5 in the case A is Cohen-Macaulay and it reproves
a series of results proved by M. Vaz Pinto in [52].

First we remark that if A is Cohen-Macaulay, then grE(A) is Cohen-Macaulay with minimal
multiplicity (E2 = JE1) and

HSE(z) =
λ(A/q) + (e0(M)− λ(A/q))z

(1− z)d
.

In particular e1(E) = e0(q)− λ(A/q).

By using (15), (13), (14) we get
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1. If dimSJ(q) = d, then e0(SJ(q)) = e1(q)− e0(q) + λ(A/q)

2. depth grq(A) ≥ depth SJ(q)− 1

3. (z − 1)HSSJ (q)(z) = HSq(z)− λ(A/q)+(e0(q)−λ(A/q))z
(1−z)d .

We recall that 3. says in particular that the Hilbert function of the Sally module is not
decreasing.

The assumption dimSJ(q) = d is equivalent to SJ(q) 6= 0. In fact, we have that dimSJ(q) = d if
and only if e1(q) > e1(E) = e0(q)− λ(A/q). This is equivalent to q2 6= Jq and hence SJ(q) 6= 0.

Remark 3.6. If q is an m-primary ideal of a a local Cohen-Macaulay ring (A,m) of dimension d,
the value of e1(q) strongly influences the structure of the Sally module. If e1(q) = e0(q)− λ(A/q),
then SJ(q) is the trivial module. The case e1(q) = e0(q) − λ(A/q) + 1 is much more difficult.
S. Goto, K. Nishida, K. Ozeki proved that in this case SJ(q) has a very nice structure (see [16],
Theorem 1.2) and, by using this surprising information and (14) we obtain

HSq(z) =
λ(A/q) + (e0(q)− λ(A/q)− c)z +

∑c+1
i=2 (−1)i

(
c+1
i

)
zi

(1− z)d

where c = λ(q2/Jq). Very recently S. Goto and K. Ozeki announced an extension of the above
result where the assumption A Cohen-Macaulay is relaxed (see [17]).

Theorem 3.7. Let (A,m) be a Cohen-Macaulay local ring of dimension d, q an m-primary ideal
and let J be an ideal generated by a maximal superficial sequence for q. The following conditions
are equivalent :

1. e0(SJ(q)) =
∑
j≥1 vj(q)

2. HSSJ (q)(z) =
∑

j≥1 vj(q)z
j

(1−z)d

3. SJ(q) is Cohen-Macaulay

and each of them is equivalent to the equivalent conditions of Theorem 2.9.

Proof. We have e0(SJ(q)) = e1(q)− e0(q) + λ(A/q). Hence, by Theorem 2.9, we get

e0(SJ(q)) ≤
∑
j≥0

vj(q)− e0(q) + λ(A/q) =
∑
j≥1

vj(q).

By Theorem 2.9, the equality holds if and only if e1(q) =
∑
j≥0 vj(q). Hence 1. is equivalent to

1., 2., 3. of Theorem 2.9. Because 1. is equivalent to

HSq(z) =
λ(A/q) +

∑
j≥0(vj(q)− vj+1(q))zj+1

(1− z)d

and we know that

(z − 1)HSSJ (q)(z) = HSq(z)− λ(A/q) + (e0(M)− (λ(A/q))z

(1− z)d
,

it is easy to see that 1. is also equivalent to 2. Now, since depth grq(A) ≥ depth SJ(q)− 1, we
get that 3. implies depth grq(A) ≥ d− 1 which is equivalent to 1.
We have only to prove that 2. implies 3. We may assume SJ(q) of dimension d and recall
that SJ(q) is a R(J) = A[JT ]-module and we have SJ(q)/JTSJ(q) = ⊕n≥1qn+1/Jqn. By 2. we
deduce that HSSJ (q)(z) = 1

(1−z)dHSSJ (q)/JTSJ (q)(z). Then JT is generated by a regular sequence

of lenght d =dimSJ(q) and hence SJ(q) is Cohen-Macaulay.

18



4 Minimal free resolution of a module over a regular local
ring

Let (R, n) be a regular local ring with infinite residue field k. Let I be an ideal of R and consider
the local ring A = R/I with maximal ideal m = n/I.

The aim of this section is to give information on the Betti numbers of A as R-module. If J is
an homogeneous ideal in a polynomial ring P, the Hilbert function of P/J can be computed from
the graded Betti numbers of a minimal P -free resolution of P/J. In the local setting we are dealing
with total Betti numbers of A and the numerical invariants of a R-free resolution does not seem
related to the Hilbert function. We will see that relevant information can be deduced from the free
resolution of the corresponding associated graded ring grm(A) = ⊕t≥0mt/mt+1. For more details
on this section we refer to [39].

If dimR = n, then the associated graded ring grn(R) with respect to the n-adic filtration is the
polynomial ring P = k[x1, . . . , xn]. If x is a non-zero element of R, we denote by x∗ (or grn(x))
the initial form of x in P. If x = 0, then x∗ = 0. We recall that

grm(A) = ⊕i≥0mi/mi+1 = grn(R)/I∗ = P/I∗.

where I∗ is the homogeneous ideal generated by the initial forms of the elements of I.

Problem: Compare the numerical invariants of the R-free minimal resolution of A with those of
the P -free minimal graded resolution of grm(A) :

0→ Rβh(I) → Rβh−1(I) → · · · → Rβ0(I) → I → 0

0→ P βs(I
∗) → P βs−1(I

∗) → · · · → P β0(I
∗) → I∗ → 0

The following example shows the difficulty of the problem.

Example 4.1. (see [19]) Consider I = (x3 − y7, x2y − xt3 − z6) in R = k[[x, y, z, t]]. Since I is a
complete intersection, then a minimal free resolution of I is given by: 0→ R→ R2 → I → 0. But
we can verify that I∗ = (x3, x2y, x2t3, xt6, x2z6, xy9 − xz6t3, xy8t3, y7t9), hence µ(I∗) = 8 and a
minimal free resolution of I∗ is given by

0→ P → P 6 → P 12 → P 8 → I∗ → 0

In particular depth A = 2 and depth grm(A) = 0.

Example 4.2. The Betti numbers of A and those of grm(A) do not necessarily coincide even if
µ(I) = µ(I∗) and depth A = depth grm(A). This is the case if we consider A = k[[t19, t26, t34, t40]].

The problem can be presented in the case of a filtered R-module M. Let M be a good n-filtration
and consider the associated graded module grM(M) := ⊕n≥0Mn/Mn+1. It is a grn(R) = P -module
and we are interested to compare a minimal R-free resolution of M with a minimal P -free resolution
of grM(M), in particular we want to compare the Betti numbers βi(M), the homological dimension
hdR(M) and the depth of M with those of grM(M)).

We shall prove

• βi(M) ≤ βi(grM(M))

• hdR(M) ≤ hdP (grM(M))

• depth M ≥depth (grM(M))
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Definition. A filtered module M is said to be of homogeneous type with respect to the filtration
M if

βi(grM(M)) = βi(M) for every i ≥ 0

We say that M is of homogeneous type if M is of homogeneous type with respect to the n-adic
filtration.

We give the following examples of modules of homogeneous type

• Let I be an ideal of R generated by a super-regular sequence. Then both A = R/I and I
are of homogeneous type (see [19]).

• Let I be an ideal of the regular ring (R, n) such that A = R/I is Cohen-Macaulay of minimal
multiplicity. Then I is of homogeneous type.

• Let I be an ideal of the regular ring (R, n) 2-generated, then I is of homogeneous type (see
[19])

• Let I be an ideal of the regular ring (R, n) such that µ(I) = µ(I∗) and I∗ is a componentwise
linear ideal. Then A = R/I is of homogeneous type (see [39]).

• Let I be a Koszul module, then I is of homogeneous type (see [HI]).

If m ∈ M \ {0}, we denote by νM(m) the largest integer p such that m ∈ Mp (the so-called
valuation of m with respect to M) and we denote by m∗ or grM(m) the residue class of m in
Mp/Mp+1 where p = νM(m) and call it the initial form of m with respect to M. If m = 0, we set
νM(m) = +∞. We will write νn(m) if we denote the valuation with respect to the n-adic filtration.

We recall that if N is a submodule of M, then grM(N) is generated by the elements x∗ with
x ∈ N, we write

grM(N) =< x∗ : x ∈ N > .

Given a filtered module M , we recall that an element g ∈M is a lifting of an element h ∈ grM(M)
if g∗ = h. The morphism of filtered modules f : M → N ( f(Mp) ⊆ Np for every p) clearly induces
a morphism of graded grn(R)-modules

gr(f) : grM(M)→ grN(N).

It is clear that gr()̇ is a functor from the category of filtered R-modules into the category of the
graded grn(R)-modules. Furthermore, we have a canonical embedding grM(Kerf)→ Ker(gr(f)),

but gr()̇ in general is not exact. We will give a characterization of the exactness in the case of
a complex of free R-modules. Let F = ⊕si=1Rei be a free R-module of rank s and ν1, . . . , νs be
integers. We define the filtration F = {Fp : p ∈ Z} on F as follows

Fp := ⊕si=1n
p−νiei = {(a1, . . . , as) : ai ∈ np−νi}.

From now on we denote the filtered free R-module F by ⊕si=1R(−νi) and we call it special filtration
on F. If (F., δ.) is a complex of finitely generated free R-modules, a special filtration on F. is a
special filtration on each Fi that makes (F., δ.) a filtered complex (complex of filtered modules).

Let M be a filtered R-module finitely generated and let S = {f1, . . . , fs} be a system of elements
of M and νM(fi) be the corresponding valuations. As before let F = ⊕si=1Rei be a free R-module
of rank s equipped with the filtration F where νi = νM(fi). Then we denote the filtered free R-
module F by ⊕si=1R(−νM(fi)), hence νF(ei) = νM(fi). Let φ : F → M be a morphism of filtered
R-modules defined by

φ(ei) = fi.
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If we denote by Syz(S) the submodule of L generated by the first syzygies of f1, . . . , fs, then
Syz(S) =Kerφ. The following diagram can help to visualize the characterization of the standard
bases which will follow.

0 −−−−→ Syz(S) = Ker(φ) −−−−→ F = ⊕si=1R(−νM(fi))
φ−−−−→ M

ei −→ fi

↑ ↓ grF ↓ grM

0 −−−−→ Syz(〈f∗1 , ..., f∗s 〉) = Ker(gr(φ)) −−−−→ ⊕si=1P (−νM(fi))
gr(φ)−−−−→ grM(M)

ei −→ f∗i

Definition 4.3. Let M be a filtered module. A subset S = {f1, .., fs} of M is called a standard
basis of M if grM(M) = 〈f∗1 , ..., f∗s 〉.

By following the initial idea of L. Robbiano and G. Valla, recently T. Shibuta (see [45]) char-
acterized the standard bases of a filtered module as follows:

Theorem 4.4. Let M be a filtered R-module, f1, . . . , fs ∈M and S = {f1, . . . , fs}. The following
facts are equivalent:

1. {f1, . . . , fs} is a standard basis of M.

2. {f1, . . . , fs} generates M and every element of Syz(〈f∗1 , ..., f∗s 〉) can be lifted to an element
in Syz(S).

3. {f1, . . . , fs} generates M and Syz(〈f∗1 , ..., f∗s 〉) = grF(Syz(S)).

Theorem 4.5. Let M be a filtered R-module and (G., d.) a P -free graded resolution of grM(M).
Then we can build up an R-free resolution (F., δ.) of M and a special filtration F on it such that
grF(F.) = G..

We recall that (F., δ.) is defined by an inductive process. Let us present the inductive steps
because the construction will be useful in the following (for more detail we refer to [39]). Starting
from (G., d.), denote by {ε0i} a basis of G0. We put gi = d0(ε0i) ∈ grM(M) and let fi ∈ M be
such that grM(fi) = gi. Then a0i = νM(fi). We define the R-free module F0 of rank β0 with the
induced special filtration F0 on Rβ0

F0 = ⊕β0

i=1R(−a0i)

Denote by {e0i} a basis of F0 and define δ0 : F0 →M such that δ0(e0i) = fi. Since d0 is surjective,

the fi’s generate a standard basis of M, Ker(d0) = grF0(Ker(δ0)) and F0
δ0→M → 0 is exact. We

can repeat the same procedure on the successive j-steps (j > 0) of the resolution of grM(M).

It is worth to remark that if we start from a minimal free resolution of grM(M), then the built up
R−free resolution of M , is not necessary minimal. It is minimal if and only if βi(M) = βi(grM(M)).

Let N be a finitely generated graded module over the polynomial ring P . We consider

Gj = ⊕βj

i=1P (−aji)
dj→ Gj−1 = ⊕βj−1

i=1 P (−aj−1,i),

21



a part of a minimal free resolution (G., d.) ofN with aj1 ≤ · · · ≤ ajβj
and aj−1,1 ≤ · · · ≤ aj−1,βj−1

.
Let 1 ≤ s ≤ βj and 1 ≤ r ≤ βj−1 and set

urs := ajs − aj−1,r,

then the matrix Uj = (urs) is called the j-th degree-matrix of N . We say that Uj is non-negative if
all the entries of Uj are non-negative. We remark that the matrices Uj are univocally determined
by the graded P -module N. Denote by pd(N) the projective dimension of N as a P -module.

Proposition 4.6. With the above notations, let (F., δ.) be a free resolution of M coming from
a graded minimal free resolution (G., d.) of grM(M). If the degree-matrices Uj of grM(M) are
non-negative for every j ≤ pd(grM(M)), then (F., δ.) is minimal.

The converse of Proposition 4.6 is not true. For example consider the local ringA = k[[t9, t17, t19, t39]]
with the m-adic filtration where m is the maximal ideal of A. One can check that the degree matri-
ces of grm(A) have negative entries but the resolution of A coming from the minimal free resolution
of grm(A) is minimal.

Example 4.7. Consider A = k[[t19, t26, t34, t40]] ' R/I where I ⊆ R = k[[x, y, z]]. As we have
already seen in Example 4.2, in this case µ(I) = µ(I∗). Since both A and grm(A) are Cohen-
Macaulay, they have the same homological dimension, nevertheless the minimal resolutions have
different Betti numbers. The corresponding minimal free resolutions have the following numerical
invariants:

0→ R→ R5 → R5 → R→ A→ 0

0→ P (−5)⊕ P (−8)→ P 3(−4)⊕ P 2(−5)⊕ P (−6)→ P 5(−3)→ P → grm(A)→ 0

This means that if we build the R-free resolution of A starting from a P -free minimal resolution of
grm(A), it is not minimal. Accordingly with Proposition 4.6 we notice that the last homogeneous
map in the resolution of grm(A), has degree matrix with an element of negative degree 5−6 = −1.

Example 4.8. Let I be an ideal of the regular ring (R, n) such that A = R/I is C-M. Assume

HSA(z) =
1 + h1z + h2z

2

(1− z)d

where h1, h2 ∈ Z and d = dimA. Then A is of homogeneous type.

J. Elias and G. Valla proved that in this case grm(A) ' P/I∗ (where m = n/I) is C-M (see
[11]). Hence we can compute the Betti numbers of grm(A) from those of the Artinian reduction
which has Hilbert series 1 + h1z + h2z

2. It is easy to see that the degree matrices (h2 6= 0) are
non negative. In fact

Uj =


1 · · · 1
1 · · · 1

2 · · · 2
2 · · · 2

0 · · · 0
0 · · · 0

1 · · · 1
1 · · · 1


Hence if we build up the free resolution (F., δ.) of I all the entries of Mj belong to n.

5 Consecutive cancellations in Betti numbers of local rings

If I is a homogeneous ideal in a polynomial ring P over a field, by Macaulay’s Theorem, there
exists a lexicographic ideal L = Lex(I) with the same Hilbert function as I. A result of Bigatti,
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Hulett and Pardue says that the graded Betti numbers βij(P/L) are greater than or equal to
the corresponding graded Betti numbers βij(P/I). Peeva (see [29]) proved that the graded Betti
numbers βij(P/I) can be obtained from the graded Betti numbers βij(P/L) by a sequence of
zero consecutive cancellations, that is cancellations in the graded Betti numbers of consecutive
homological degrees corresponding to the same shift.

As application of Section 4, the aim of this section we shall present an extension of Peeva’s
result to the local case.
Because the Hilbert function of the local ring A = R/I is the Hilbert function of the associated
graded ring grm(A) := ⊕t≥0mt/mt+1 where m = n/I, to any ideal I corresponds the unique
lexicographic ideal L = Lex(I) such that P/L has the same Hilbert function as grm(A). It will
be enough to enlarge the allowed cancellations on the resolution of L = Lex(I) for getting a
resolution of a local ring R/I. Because we can pass from the resolution of L to the resolution of
grm(A) = P/I∗ by using Peeva’s result, the crucial point will be to describe the second step: the
possible cancellations from a resolution of grm(A) to a resolution of A.

This connection between the graded perspective and the local one is a new viewpoint and we
hope it will be useful for studying the numerical invariants of local rings. We will see interesting
applications.

Most of the results are given in the more general setting of the filtrations on a module M over
a regular local ring (R, n). The results that I shall present here are containing in the paper [40].

We present the following definition which is a suitable adaptation of Peeva’s definition.

Given a sequence of numbers {ci} such that ci =
∑
j∈N cij , we obtain a new sequence by

a consecutive cancellation as follows: fix an index i, and choose j and j′ such that j ≤ j′ and
cij , ci−1,j′ > 0; then replace cij by cij − 1 and ci−1,j′ by ci−1,j′ − 1, and accordingly, replace in the
sequence ci by ci− 1 and ci−1 by ci−1− 1. If j < j′ we call it an i negative consecutive cancellation
and if j = j′ an i zero consecutive cancellation.

A sequence of consecutive cancellations will mean a finite number of consecutive cancellations
performed on a given sequence.

Let N be a homogeneous P -module with P - free graded resolution given by:

G. : 0→ ⊕i≥0P βlj (−j) dl→ ⊕i≥0P βl−1,j (−j) dl−1→ . . .
d1→ ⊕i≥0P β0j (−j).

According to the above definition, we will say that the sequence of the Betti numbers {βi =∑
j∈N βij} of N admits an i negative consecutive cancellation (resp. i zero consecutive cancella-

tion) if there exist integers j < j′ (resp. j = j′) such that βij , βi−1,j′ > 0.

For example · · · → P (−3)⊕ P (−5)⊕ P (−6)→ P 2(−2)⊕ P 2(−5)→ . . . admits a zero cancel-
lation (P (−5), P (−5)) and a negative cancellation (P (−3), P (−5)).

Notice that an i negative consecutive cancellation in a graded free resolution of N corresponds
to a negative entry i-th degree-matrix of N.

Combining Theorem 4.5 and Proposition 4.6, we present the following result.

Theorem 5.1. Let (R, n) be a regular local ring and let M be a filtered R-module. Then the Betti
numbers of M as R-module can be obtained from the sequence of the Betti numbers of grM(M) as
P -module by a sequence of negative consecutive cancellations.

The crucial point of the above result is Proposition 4.6. We will sketch here the proof.

Let (G., d.) be the minimal free resolution of grM(M) and {βi =
∑
j∈N βij} the corresponding

sequence of the Betti numbers. By Theorem 4.5, we build up a free resolution (F., δ.) of M as
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R-module from (G., d.). If (F., δ.) is not minimal, then, for some integer i, the matrix of the i-th
differential map δi

Fi = Rβi
δi→ Fi−1 = Rβi−1

has an invertible entry. By Proposition 4.6, the i-th degree-matrix Ui = (urs) of grM(M) has a
negative entry. This means that the sequence {βi =

∑
j∈N βij} admits an i negative consecutive

cancellation.
Then we apply to the resolution (F., δ.) a standard procedure (see for example [8]). After a

suitable change of the basis of Fi−1, the matrices of differential maps in the resolution of M change
just for δi and δi−1. Actually we may define a trivial subcomplex of (F., δ.)

H. : 0→ · · · → 0︸ ︷︷ ︸
l−i+1

→ R
id→ R→ 0→ · · · → 0︸ ︷︷ ︸

i

,

where l is the length of (F., δ.), embedded in F. in such a way that F̃. = F./H. is again a free
resolution of M which corresponds to cancel a copy of R in Fi and Fi−1. It is easy to see that
the eventually remaining invertible entries of the matrices of differential maps of new resolution
still correspond to negative entries of degree matrices of grM(M) out of the row and column of the

previous entry of negative degree. We can repeat the procedure on F̃. until to reach a minimal
free resolution of M.

We present the following examples in order to help the reader to visualize better the procedure.

Example 5.2. We consider again Example 4.7, i.e. A = k[[t19, t26, t34, t40]]. Starting from the
minimal P -free resolution of grm(A) :

0→ P (−5)⊕ P (−8)→ P 3(−4)⊕ P 2(−5)⊕ P (−6)→ P 5(−3)→ P → grm(A)→ 0

we get the resolution
0→ R→ R5 → R5 → R→ A→ 0

of A by deleting P (−5) and P (−6).

Example 5.3. Let I = (x2 + xy3, xy + z3, xz3 − xy4 + y2z4) be in R = K[[x, y, z]] and consider
A = R/I with the maximal ideal m = n/I. Then grm(A) = P/I∗ where P = k[x, y, z] and I∗

is the ideal generated by the initial forms of the elements of I. An easy computation shows that
I∗ = (x2, xy, xz3, y2z4,−z6, y6z3) and the minimal free resolution of grm(A) is as follows

G. : 0 → P (−6)⊕ P (−9)⊕ P (−11)→ P (−3)⊕ P 2(−5)⊕ P 2(−7)⊕ P (−8)⊕ P 2(−10)

→ P 2(−2)⊕ P (−4)⊕ P 2(−6)⊕ P (−9)→ P

Since P (−11) does not admit cancellations (11− a2i > 0), thus depth(A) = depth(grm(A)) = 0.
The minimal free resolution (F., δ.) of A

0→ R→ R3 → R3 → R

is obtained from the resolution of grm(A) after the following 5 negative consecutive cancella-
tions on (F3, F2, F1) corresponding to (P (−6), P (−7), 0), (P (−9), P (−10), 0), (0, P (−3), P (−4)),
(0, P (−5), P (−6)), (0, P (−8), P (−9)).

It should be noted that there are many examples where the existence of possible consecutive
cancellations does not imply the existence of an ideal for which those cancellations are realized.

Example 5.4. Let I be an ideal in the regular local ring (R, n) such that A = R/I is Artinian
with Hilbert function {(1, 5, 1, 1, 1)} and R/n has characteristic 0. Elias and Valla (see [11]) have
proved that the number of the isomorphism classes of the Artinian local rings with this Hilbert
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function is 5. They have different Betti numbers because they correspond to the different values
of the Cohen-Macaulay type 1 ≤ τ ≤ 5. Up to isomorphism, all of them have the same associated
graded ring grm(A) = P/I∗ where

I∗ = (x51, x1x2, x1x3, x1x4, x1x5, x
2
2, x2x3, x2x4, x2x5, x

2
3, x3x4, x3x5, x

2
4, x4x5, x

2
5)

in P = k[x1, . . . , x5]. Hence the minimal free resolution of grm(A) is

G. : 0→ P 4(−6)⊕ P (−9)→ P 20(−5)⊕ P 4(−8)→ P 39(−4)⊕ P 6(−7)

→ P 36(−3)⊕ P 4(−6)→ P 14(−2)⊕ P (−5)→ P.

By Theorem 5.1 and by Elias and Valla’s result, we know that only 5 diagrams of negative con-
secutive cancellations can be realized, but the resolution of grm(A) admits a larger number of
sequences of negative consecutive cancellations.

Next example shows that we may take advantage of the generality of Theorem 5.1 by detecting
the problem by using the more advantageous filtration.

Example 5.5. Consider the ideal I = (x2y5, xyz6−z9, y5z6) in R = K[[x, y, z]]. We have grm(A) =
P/I∗ where I∗ = (x2y5, xyz6, y5z6, y4z9, y3z12, y2z15, yz18, z21) in P = K[x, y, z]. The minimal
graded free resolution of I∗ as P -module is

G. : 0→ P (−15)⊕ P (−17)⊕ P (−19)⊕ P (−21)→ P (−12)⊕ P (−13)⊕ P 2(−14)

⊕P 2(−16)⊕ P 2(−18)⊕ P 2(−20)⊕ P (−22)→ P (−7)⊕ P (−8)⊕ P (−11)⊕ P (−13)

⊕P (−15)⊕ P (−17)⊕ P (−19)⊕ P (−21)

We can prove that
grn(I) = P ⊕ P/(x2y5)⊕ P/(x2, xy, xz3, z6)

where n = (x, y, z). Hence the minimal free resolution of grn(I) is

G. : 0→ P (−6)
d3→ P (−3)⊕ P 2(−5)⊕ P (−7)

d2→ P 2(−2)⊕ P (−4)⊕ P (−6)⊕ P (−7)
d1→ P 3

which is easier to handle. By using the procedure of Theorem 5.1, in particular after per-
forming the negative consecutive cancelations on (F3, F2, F1) corresponding to (P (−6), P (−7), 0),
(0, P (−5), P (−7)), (0, P (−5), P (−6)), (0, P (−3), P (−4)) we get the minimal free resolution of I:

0→ R2 → R3 → I → 0.

Combining Peeva’s result with Theorem 5.1, we immediately get the following theorem.

Theorem 5.6. Let I be an ideal of the local regular ring (R, n). The Betti numbers of R/I can
be obtained from the Betti numbers of P/Lex(I) by a sequence of negative and zero consecutive
cancellations.

We give now some possible applications.

In the following µ( ) will denote the minimal number of generators. Next corollary extends to
the local case a recent result by Hibi and Murai in [21].

Corollary 5.7. Let I ⊆ n2 be a non-zero ideal of the local regular ring (R, n) of dimension n.
Assume µ(Lex(I)) ≤ n, then

1. dim(R/I) = n− 1.
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2. depth(R/I) = depth(P/I∗) = depth(P/Lex(I)) = n− µ(Lex(I)).

3. µ(Lex(I)) = pd(R/I).

4. βh(R/I) = βh(P/I∗) = βh(P/Lex(I)) = 1 where h = pd(R/I).

As we have announced in Section 1., we get partial information on the possible Hilbert function
of an Artinian Gorenstein local ring.

Corollary 5.8. Let {(1, n, h2, ..., ht, 1, ..., 1, 0, 0, . . . )} be the h-vector of an Artinian Gorenstein
local ring A = R/I. Then ht ≤ n.

We give evidence of the above result by the following example.

Example 5.9. We show that {(1, 3, 4, 4, 1, 1, 1)} cannot be the h−vector of any Artinian Goren-
stein local ring A = K[[x, y, z]]/I. In fact L = Lex(I) should be

L = (x2, xy, x2z, xz2, xyz, y4, y3z, y2z2, yz3, z7).

The minimal free resolution of P/L is:

G : 0 → P (−5)⊕ P 3(−6)⊕ P (−9)→ P (−3)⊕ P 2(−4)⊕ P 7(−5)⊕ P 2(−8)→
P 2(−2)⊕ P (−3)⊕ P 4(−4)⊕ P (−7)→ P

However, if we consider any sequence of zero and negative consecutive cancellations, we get β3(A) ≥
2 which contradicts the assumption that A is Gorenstein.

Another easy consequence of Theorem 5.6 is a result stated by Macaulay, later proved by
Briancon and Iarrobino with different methods and very technical devices.

Corollary 5.10. Let HF = {(1, 2, ..., d, hd, ..., hs, 0, ..., 0)} be the Hilbert function of an Artinian
Gorenstein local ring A = R/I, then for every j > 0, |hj − hj−1| ≤ 1.

The key of the above result is the following. For every j > 0 define

ej := |hj − hj−1|

and let d be the initial degree of the ideal I. It is easy to see that the minimal number of generators
of degree d of the corresponding lexicographic ideal L is ed+ 1 and, for j > d, the minimal number
of generators of degree j of L is ej . Notice that

∑
j≥d ej = d. The minimal free resolution of P/L

is given by 0→ F2 → F1 → P → P/L→ 0 where F2 and F1 have respectively rank d and d+ 1.
In particular,

F2 = ⊕j≥0P ed+j (−d− j − 1) and F1 = P ed+1(−d)⊕j≥1 P ed+j (−d− j).

Since β2(A) = 1, by looking the admissible cancellations, we may easily conclude.

It should be noted that in codimension two (not necessarily Gorenstein) for all consecutive zero
or negative cancellation, there exists an ideal for which those cancellations are realized. We show
this by the following example.

Example 5.11. Let HF = {(1, 2, 3, 4, 3, 3, 3, 2, 2, 1, 0, ..., 0)}, then L = 〈x4, x3y, x2y5, xy8, y10〉.
The minimal free resolution of P/L is

0→ P (−5)⊕ P (−8)⊕ P (−10)⊕ P (−11)→ P 2(−4)⊕ P (−7)⊕ P (−9)⊕ P (−10)→ P
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The resolution admits two negative cancellations: (P (−5), P (−7)), (P (−8), P (−9)) and the zero
cancellation (P (−10), P (−10)). The sequence obtained by the zero and negative cancellations 0→
R→ R2 → R can be realized. It is enough to modify the matrix of L by putting 1 in the positions
corresponding to the cancellations. The ideal I is generated by the maximal minors of the following
matrix 

y 0 0 0
−x y4 0 0
1 −x y3 0
0 1 −x y2

0 0 1 −x

 .

We have I = 〈x4 − x2y2 − x2y3 − x2y4 + y6, x3y − xy3 − xy4〉 and L = Lex(I). Furthermore, the
minimal free resolution of P/I∗ is obtained by performing the only zero cancellation:

0→ P (−5)⊕ P (−8)⊕ P (−11)→ P 2(−4)⊕ P (−7)⊕ P (−9)→ P

and I∗ = 〈x4 − x2y2, x3y − xy3, x2y5 − y7, xy8〉 is given by the maximal minors of the matrix
y 0 0 0
−x y4 0 0
0 −x y3 0
0 0 −x y2

0 0 1 −x

 .
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