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Abstract

The set of Hilbert functions of standard graded algebras is considered as a partially
ordered set under numerical comparison. For the set of algebras H(d, e0), of a given
dimension d and multiplicity e0, we describe the requirements its maximal elements
must satisfy; under fairly general conditions, the extremal functions arise from Cohen-
Macaulay algebras. We also examine the subset H(d, e0, e1), of those functions whose
first two coefficients of their Hilbert polynomials are assigned. Finally, we show how
these results and the use of certain extended multiplicities can be used to prove finiteness
theorems for the number of corresponding functions.

1 Introduction

A standard graded algebra is a graded ring G =
⊕

n≥0 Gn, finitely generated over G0 by
its elements of degree 1, G = G0[G1]. Unless stated otherwise, those will be the only kind
we shall treat. When G0 is an Artinian local ring, we denote the Hilbert function of G by
HG(n) = `(Gn), where `(·) is the ordinary length function. The Hilbert–Poincaré series of
G is defined as

PG(t) =
∑
n≥0

HG(n)tn.

This is a rational function PG(t) = h(t)
(1−t)d , where h(1) = deg(G), d = dim G are respectively

the degree or multiplicity of G and its dimension. We note by PG(t) the corresponding
Hilbert polynomial

PG(t) = e0(G)
(

t + d− 1
d− 1

)
− e1(G)

(
t + d− 2

d− 2

)
+ · · ·+ (−1)d−1ed−1(G).
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In particular e0(G) = deg(G) = h(1).
There are also iterated versions of these functions and we will make use of H1

G(n) =∑
i≤n HG(i), and the corresponding Hilbert series P 1

G(t) = PG(t)
1−t and Hilbert polynomial

P1
G(t) = e0(G)

(
t + d

d

)
− e1(G)

(
t + d− 1

d− 1

)
+ · · ·+ (−1)ded(G)

The integers e0(G), . . . , ed(G) are called the Hilbert coefficients of G. Where there is no
danger of confusion, we will write for short ei instead of ei(G).

There is a great deal of interest on the structure of the set H of these functions. Our
approach to them takes into account the partially ordered structure afforded by the defini-
tion

PG(t) ≥ PG′(t) ⇔ HG(n) ≥ HG′(n), ∀n.

Thus for a given a condition C on Hilbert functions, we define H(C) to be the set of all
Hilbert functions satisfying C. Two of the main questions are to search for the extremal
members of H(C) and to ascertain when it is finite. Among these sets we will consider
H(d, e0), defined by all algebras with a given dimension d and multiplicity e0, and its
subset H(d, e0, e1).

One of the most significant classes of these algebras arise as associated graded rings
of filtrations of Noetherian local rings, particularly of the following kind. Let (R,m) be a
Noetherian local and let I be an m–primary ideal. The Hilbert function of the associated
graded ring

grI(R) =
⊕
n≥0

In/In+1

is significant for its role as a control of the blowup process of Spec(R) along the subvariety
V (I). A challenging problem consists in relating PI(t) = PgrI(R)(t) directly to R and I, as
grI(R) may fail to inherit some of the arithmetical (e.g. Cohen–Macaulayness) properties
of R.

We will now describe some of our results. Each deals with one of the general aspects,
mentioned above, of the set of Hilbert functions of algebras of a fixed dimension. Section 2
deals with general bounds for the set H(d, e0(I)) where e0(I) := e0(grI(R)). It is centered
on estimates of the following kind:

Theorem 2.2 Let (R,m) be a Noetherian local ring of dimension d ≥ 1 and let I be an
m−primary ideal in R. If J = (x1, . . . , xd) is an ideal generated by a system of parameters
in I, then

PI(t) ≤
`(R/I) + `(I/J)t

(1− t)d
.

If the equality holds, then grI(R) is Cohen-Macaulay.

2



When R is Cohen–Macaulay, `(R/J) = e0(I), which gives the formula above a con-
venient expression. In this case it shows that H(d, e0(I), `(R/I)) has a unique maximal
element.

The next section considers bounds involving e0(I) and e1(I). It is generally framed
by the fact that the parameters e0(I) and e1(I) are not independent of one another. In
addition, for fine control, we will require Cohen–Macaulay hypotheses to sharpen the results
of the previous section.

Our first general bound was partially motivated by a calculation in [3].

Theorem 3.3 Let (R,m) be a Cohen–Macaulay local ring of dimension d ≥ 1 and let I be
an m−primary ideal. Then

P 1
I (t) ≤ `(R/I) + (e0(I)− `(R/I)− 1)t + ts+1

(1− t)d+1

where s = e1(I)− e0(I) + `(R/I).

This gets further refined when we consider the tangent cones of Cohen–Macaulay local
rings. In Theorem 3.4 we prove that

P 1
R(t) ≤ 1 + bt + (e0 − b− 2)t2 + tδ+2

(1− t)d+1
,

where b and δ are certain functions of e0 and e1.

It is quite clear how to exploit these bounds in order to derive finiteness results for the
number of Hilbert functions. What is required is a mechanism to limit the postulation
numbers of the algebras. To that end we employ the notion of extended or cohomological
multiplicity introduced in [2]. In section 4 we give a bound on the number of Hilbert
functions that have a given dimension and given extended multiplicity. This notion is
however a strong requirement in comparison to the ordinary multiplicity. In counterpoint
it provides effective bounds on the corresponding Hilbert coefficients:

Theorem 4.3 Let Deg(·) be a cohomological degree function on graded algebras. Given
two positive integers A, d, there exist only a finite number of Hilbert functions associated
to standard graded algebras G over Artinian rings such that dim G = d and Deg(G) ≤ A.
Furthermore, there are integers bi dependent only on dim G such that |ei| ≤ biDeg(G)i+1,
where ei, for 0 ≤ i ≤ d, are the coefficients of the Hilbert polynomial P1

G(t).

2 Boundedness of Hilbert Functions

In this section we develop general bounds for the Hilbert functions of algebras of a given
dimension d and a given multiplicity. The algebras considered throughout will be either the
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associated graded ring of an m-primary ideal of a Noetherian local ring (R,m), or, more
generally, standard graded algebras G =

⊕
n≥0 Gn where G0 is an Artinian local ring. For

simplicity only of expression we will drop ‘Noetherian’. It will be harmlessly assumed that
the residue fields of these local rings are infinite. This is achieved, without changing the
Hilbert functions, in the usual manner: replacing the local ring (R,m) by R[X]mR[X], where
X is an indeterminate over R. For definitions and basic results we shall use [1], [5] and [15].

Let (R,m) be a local ring of dimension d and let I be an m−primary ideal in R. We
denote by

HI(n) = `(In/In+1)

the Hilbert function of I. In the case I = m, we write HR(n). If we let

H1
I (n) =

n∑
j=0

HI(j) = `(R/In+1)

then H1
I (n)−H1

I (n− 1) = HI(n).

Let PI(t) =
∑

n≥0 HI(n)tn be the Hilbert series of I, then

P 1
I (t) =

∑
n≥0

H1
I (n)tn =

PI(t)
(1− t)

.

The following proposition can be considered a consequence of a well known result proved
by Singh, of which we provide a short proof.

Proposition 2.1 Let (R,m) be a local ring and let I be an m−primary ideal in R. If x ∈ I,
R = R/xR and I = I/(x), then

1. HI(n) = H1
I
(n)− `(In+1 : x/In) for every n ≥ 0.

2. PI(t) ≤
PI(t)

(1−t) and if the equality holds, then x∗ ∈ I/I2 is regular in grI(R) and
grI(R)/(x∗) ' grI(R).

Proof. From the exact sequence

0 → (In+1 : x)/In −→ R/In −→ R/In+1 −→ R/I
n+1 → 0,

induced by multiplication by x, we get the equality 1.
For the second assertion, the first claim follows by 1. since

PI(t)
(1− t)

= P 1
I
(t) =

∑
n≥0

H1
I
(n)tn.

In particular, if the equality holds, then In+1 : x = In for every n, hence x∗ ∈ I/I2 is
regular in grI(R). It is then well known that this implies grI(R)/(x∗) ' grI(R). 2
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Theorem 2.2 Let (R,m) be a local ring of dimension d ≥ 1 and let I be an m−primary
ideal in R. If J = (x1, . . . , xd) is an ideal generated by a system of parameters in I, then

PI(t) ≤
`(R/I) + `(I/J)t

(1− t)d
.

If the equality holds, then grI(R) is Cohen-Macaulay.

Proof. We induct on d. Let d = 1 and J = (x) where x is a parameter in I. We have

`(R/I) + `(I/J)t
(1− t)

= `(R/I) + `(R/xR)t + `(R/xR)t2 + · · ·+ `(R/xR)tn + · · ·

and HI(0) = `(R/I).
We remark that

R ⊇ In ⊇ In+1 ⊇ xIn

R ⊇ xR ⊇ xIn,

so that
`(R/xR) + `(xR/xIn) = `(R/In) + HI(n) + `(In+1/xIn).

On the other hand, from the exact sequence

0 → (0 : x + In)/In → R/In → xR/xIn → 0

we get
`(R/In) = `(xR/xIn) + `((0 : x + In)/In).

It follows that for every n ≥ 1

`(R/xR) = HI(n) + `(In+1/xIn) + `((0 : x + In)/In). (1)

This proves that HI(n) ≤ `(R/xR) for every n ≥ 1 and the first assertion of the theorem
follows.

If we have the equality

PI(t) =
`(R/I) + `(I/J)t

(1− t)
,

then `(R/xR) = HI(n) for every n ≥ 1, so that, by (1),

`(In+1/xIn) = `((0 : x + In)/In) = 0.

This implies that x∗ ∈ I/I2 is regular in grI(R) and grI(R) is Cohen-Macaulay.
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Suppose d ≥ 2, and let R = R/x1R, I = I/x1R, J = J/x1R. Then R/I ' R/I and
I/J ' I/J ; further I is a primary ideal in the local ring R which has dim R = d − 1. By
induction we have

PI(t) ≤
`(R/I) + `(I/J)t

(1− t)d−1
=

`(R/I) + `(I/J)t
(1− t)d−1

.

Since 1/(1− t) ≥ 0, we also get

PI(t)
(1− t)

≤ `(R/I) + `(I/J)t
(1− t)d

,

hence, using Proposition 2.1, we get

PI(t) ≤
PI(t)
(1− t)

≤ `(R/I) + `(I/J)t
(1− t)d

=
`(R/I) + `(I/J)t

(1− t)d
.

This proves the first assertion of the theorem for any d ≥ 1.
If we have the equality

PI(t) =
`(R/I) + `(I/J)t

(1− t)d
,

then

PI(t) =
PI(t)
(1− t)

, PI(t) =
`(R/I) + `(I/J)t

(1− t)d−1
.

The first equality implies by Proposition 2.1 that x∗1 ∈ I/I2 is regular in grI(R) and
grI(R)/(x∗1) ' grI(R).

The second equality implies by induction that grI(R) ' grI(R)/(x∗1) is Cohen-Macaulay.
Hence grI(R) is Cohen-Macaulay. 2

Remark 2.3 If the equality holds in the above theorem, then R itself is Cohen-Macaulay
and `(R/J) = e0(I). In particular I has the minimal possible multiplicity for an m−primary
ideal in R.

Nearly the same treatment applies to standard graded algebras, which we state for later
reference.

Proposition 2.4 Let (G0,m) be an Artinian local ring and let G =
⊕

n≥0 Gn be a standard
graded algebra of dimension d ≥ 1. If J is the ideal generated by an homogeneous system of
parameters in G, then

PG(t) ≤ `(G0) + (`(G/J)− `(G0))t
(1− t)d

.

If the equality holds, then G is Cohen-Macaulay.
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Proof. Set I = G+ =
⊕

n≥1 Gn, and note that I is primary for the irrelevant maximal ideal
M of G, grI(G) ' G, and that J is generated by a system of parameters. Note also that
the associated graded rings and lengths are not changed if G or the localization GM are
considered. Theorem 2.2 can now be applied directly. 2

These results show that the Hilbert function of I is bounded by the rational function

`(R/I) + (`(R/J)− `(R/I))t
(1− t)d

for any ideal J generated by a system of parameters that yields minimal length for R/J . It
is however not clear which number this turns out to be, except when R is Cohen–Macaulay
when we have:

Corollary 2.5 Let (R,m) be a Cohen-Macaulay local ring of dimension d ≥ 1. If I is an
m−primary ideal in R, then

PI(t) ≤
`(R/I) + (e0(I)− `(R/I))t

(1− t)d
.

If the equality holds, then grI(R) is Cohen-Macaulay.

Proof. Under our assumptions, if x1, . . . , xd is a superficial sequence for I, then it is a
system of parameters in I and `(R/J) = e0(I). 2

This formula, in case I = m, was obtained in [2] through different means. We shall
now explain the difference between the two sides of the formula above. Let J be a minimal
reduction of the ideal I. Since R has an infinite residue field, J is generated by a regular
sequence. Now consider the construction of the Sally module of I relative to J : it is simply
the R[Jt]–module SJ(I) defined by the natural exact sequence

0 → I ·R[Jt] −→ I ·R[It] −→ SJ(I) → 0.

SJ(I) = 0 when I2 = JI, that is when I has so–called minimal multiplicity. In all the other
cases, SJ(I) has no embedded primes and dim SJ(I) = dim R = d.

A calculation in [20] (see also [21]) shows that

PI(t) =
`(R/I) + (e0(I)− `(R/I))t

(1− t)d
− (1− t)PSJ (I)(t).

Hence the inequality of Corollary 2.5 is equivalent to the following assertion:

Corollary 2.6 The Hilbert function of SJ(I) is non–decreasing.
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This answers a question raised in [19, p. 385].

Remark 2.7 One application of Theorem 2.2 is to employ the technique of [2] to obtain
estimates for the reduction number r of the ideal I.

For simplicity of notation, set a := `(R/I), b := `(I/J) and c := a + b = `(R/J). From
the inequality of Hilbert series

PI(t) ≤
`(R/I) + `(I/J)t

(1− t)d
,

we have that for each positive integer n,

`(In/mIn) ≤ `(In/In+1) ≤ a

(
n + d− 1

d− 1

)
+ b

(
n + d− 2

d− 1

)
.

According to [4], if for some integer n we bound the right hand side of this inequality by(
n+d

d

)
, we can find a reduction J of I such that JIn−1 = In. This is easy to work out since

the inequality

a

(
n + d− 1

d− 1

)
+ b

(
n + d− 2

d− 1

)
<

(
n + d

d

)
is quadratic:

(n + d)(n + d− 1) > ad(n + d− 1) + bdn.

The inequality is certainly satisfied for n > dc−2d+1+
√

(a− 1)(d− 1)d. As a consequence
we get a bound for the reduction number r of I, namely

r ≤ dc− 2d + 1 +
√

(a− 1)(d− 1)d.

The inequality r ≤ dc − 2d + 1 is the bound in [2] for the Cohen–Macaulay case, so that√
(a− 1)(d− 1)d is a penalty for the lack of that condition.

3 Bounds involving e0(I) and e1(I)

Throughout this section (R,m) will be a Cohen–Macaulay local ring of dimension d > 0.
Let I be an m−primary ideal and we denote by e0(I) and e1(I) the first two coefficients of
the Hilbert polynomial of I.

The integers e0(I) and e1(I) are loosely related. In case I = m (see [10]):

e0(m)− 1 ≤ e1(m) ≤
(

e0(m)− 1
2

)
.

Actually there are more strict relations when Hilbert functions of primary ideals are con-
sidered. The following proposition gives an instance.
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We need to recall some basic properties of one dimensional Cohen-Macaulay local rings.
Let R be a Cohen-Macaulay local ring of dimension one. If x is a superficial element in I,
then for every non negative integer j

HI(j) = e0(I)− vj

where vj = `(Ij+1/xIj) (see (1)). In particular v0 = e0(I) − `(R/I), v1 = e0(I) − `(I/I2)
and if vn = 0 for some n, then vj = 0 for every j ≥ n. It is also known (see [15, Theorem
6.18]) that

e1(I) =
∑
j≥0

vj .

Proposition 3.1 Let (R,m) be a local Cohen–Macaulay ring of dimension one, let I be an
m–primary ideal. If e0(I) 6= e0(m) then

e1(I) ≤
(

e0(I)− 2
2

)
.

Proof. The condition e0(I) 6= e0(m) means, by the theorem of Rees (see [12]), that m is not
the integral closure of I. This implies that for each positive integer n, In+1 6= mIn, and
therefore `(In/In+1) > `(In/mIn).

If x is a superficial element of I, then x is a regular element in R so that by (1) the
Hilbert function of I can be written

HI(n) = `(In/In+1) = e0(I)− vn,

so it only reaches its stable value of e0(I) when n = r, the reduction number of I, that
is the smallest r for which Ir+1 = xIr. We claim that for all n ≤ r, `(In/In+1) ≥ n + 2.
Indeed otherwise we would have `(In/mIn) ≤ n, which by the main theorem of [4] would
lead to an equality In = xIn−1, contradicting the definition of r. This means that we have

e1(I) =
r∑

n=0

(e0(I)− `(In/In+1))

≤ e0(I)− `(R/I) +
r∑

n=1

(e0(I)− (n + 2))

= e0(I)− `(R/I) + r(e0(I)− 2)−
(

r + 1
2

)
.

Since r ≤ e0(I) − 1, we may assume that e0(I) ≥ 3 (otherwise I = (x) and the result
follows). Substituting we have the desired inequality. 2
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The following result on the Hilbert series of a Cohen-Macaulay local ring of dimension
one will be crucial in different applications.

We define
δ := e1(I)− 2e0(I) + `(R/I) + `(I/I2)

and we remark that
δ = e1(I)− v0 − v1 =

∑
j≥2

vj ≥ 0.

Proposition 3.2 Let (R,m) be a local Cohen–Macaulay ring of dimension one and let I
be an m−primary ideal. We set h = `(I/I2)− `(R/I) and let δ be the integer defined above.
Then

P 1
I (t) ≤ `(R/I) + ht + (e0(I)− h− `(R/I)− 1)t2 + tδ+2

(1− t)2
.

Proof. We have

`(R/I) + ht + (e0(I)− h− `(R/I)− 1)t2 + tδ+2

(1− t)2
=

= `(R/I) +
∑
n≥1

[
(n− 1)e0(I) + h + 2`(R/I)−min{n− 1, δ}

]
tn.

Since H1
I (0) = `(R/I) and

H1
I (1) = HI(0) + HI(1) = `(R/I) + `(R/I) + h = 2`(R/I) + h,

we may assume n ≥ 2. Then we can write

H1
I (n) = (n + 1)e0(I)−

n∑
j=0

vj = (n− 1)e0(I) + h + 2`(R/I)−
n∑

j=2

vj

and we must prove
n∑

j=2

vj ≥ min{n− 1, δ}.

The inequality follows since if vn 6= 0, then
∑n

j=2 vj ≥ n−1, otherwise
∑n

j=2 vj =
∑

j≥2 vj =
δ. 2

Unless I = m, the above Proposition does not extend to the higher dimensional case
because h and δ have a bad behavior modulo a superficial element. Hence, in the following
theorem, the main point is to work out from the above proposition an upper bound for
P 1

I (t) which, even weaker, does not involve any longer the integers h and δ.
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We recall that if I is primary for the maximal ideal of the Cohen-Macaulay local ring
R, then

e1(I) ≥ e0(I)− `(R/I).

Theorem 3.3 Let (R,m) be a Cohen–Macaulay local ring of dimension d ≥ 1, let I be an
m–primary ideal and s := e1(I)− e0(I) + `(R/I).

a) If d = 1, then

P 1
I (t) ≤ `(R/I) + (e0(I)− `(R/I)− 1)t + ts+1

(1− t)2
.

b) If d ≥ 2 then

PI(t) ≤
`(R/I) + (e0(I)− `(R/I)− 1)t + ts+1

(1− t)d
.

c) If the equality holds in a) or in b), then either

s = 0, e0(I) = `(I/I2) + (1− d)`(R/I)

and grI(R) is Cohen-Macaulay, or

s ≥ 1, e0(I) = `(I/I2) + (1− d)`(R/I) + 1

and depth grI(R) ≥ d− 1.

Proof. We first prove a). Let d = 1, then we have

`(R/I) + (e0(I)− `(R/I)− 1)t + ts+1

(1− t)2
= `(R/I) +

∑
n≥1

[
ne0(I) + `(R/I)−min{n, s}

]
tn.

With δ and vi as above, we have s = e1(I) − e0(I) + `(R/I) =
∑

j≥1 vj and δ =
∑

j≥2 vj .
By Proposition 3.2 it is enough to show that for every n ≥ 1

(n− 1)e0(I) + `(I/I2) + `(R/I)−min
{

n− 1,
∑
j≥2

vj

}
≤ ne0(I) + `(R/I)−min

{
n,

∑
j≥1

vj

}
or equivalently

e0(I) ≥ `(I/I2) + min
{

n,
∑
j≥1

vj

}
−min{n− 1,

∑
j≥2

vj}.

Now e0(I) = HI(1) + v1 = `(I/I2) + v1 and the conclusion follows since clearly

v1 + min
{

n− 1,
∑
j≥2

vj

}
≥ min

{
n,

∑
j≥1

vj

}
.
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¿From this computation it follows that

P 1
I (t) =

`(R/I) + (e0(I)− `(R/I)− 1)t + ts+1

(1− t)2

if and only if
v1 + min

{
n− 1,

∑
j≥2

vj

}
= min

{
n,

∑
j≥1

vj

}
.

This can happen if and only if v1 ≤ 1. If v1 = 0, then I2 = xI, hence grI(R) is Cohen-
Macaulay, e0(I) = `(I/I2) and s = 0. If v1 = 1, then s ≥ 1 and e0 = `(I/I2) + 1.

This proves a) and the case d = 1 in c).
We prove now b) by induction on d ≥ 2. If x is a superficial element for I, then R = R/(x)

is a local Cohen–Macaulay ring of dimension d − 1. In particular I = I/(x) is primary for
the maximal ideal of R and

e0(I) = e0(I), e1(I) = e1(I), `(R/I) = `(R/I).

This implies
s = e1(I)− e0(I) + `(R/I) = e1(I)− e0(I) + `(R/I)

and

`(R/I) + (e0(I)− `(R/I)− 1)t + ts+1

(1− t)d
=

`(R/I) + (e0(I)− `(R/I)− 1)t + ts+1

(1− t)d
.

By Proposition 2.1, we have PI(t) ≤
PI(t)
1−t , and we claim that

PI(t)
1− t

≤ `(R/I) + (e0(I)− `(R/I)− 1)t + ts+1

(1− t)d
.

This would imply

PI(t) ≤
PI(t)
1− t

≤ `(R/I) + (e0(I)− `(R/I)− 1)t + ts+1

(1− t)d
(2)

which gives the conclusion.
To prove the claim we remark that PI(t)

1−t = P 1
I
(t), so that the inequality follows by a) if

d = 2. If d ≥ 3, the inequality follows as well since, by induction,

PI(t) ≤
`(R/I) + (e0(I)− `(R/I)− 1)t + ts+1

(1− t)d−1
.
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Let us prove now c) by induction on d ≥ 2. First we show that the assumption implies
depth grI(R) ≥ d− 1. If we have

PI(t) =
`(R/I) + (e0(I)− `(R/I)− 1)t + ts+1

(1− t)d
,

the inequalities in (2) are in fact equalities so that

PI(t) =
PI(t)
1− t

, PI(t) =
`(R/I) + (e0(I)− `(R/I)− 1)t + ts+1

(1− t)d−1
.

The first equality implies by Proposition 2.1 that x∗1 is a regular element in grI(R) so that
the conclusion follows if d = 2.

If d ≥ 3, the second equalities implies by induction that depth grI(R) ≥ d − 2, hence
depth (grI(R)/(x∗1)) ≥ d−2. Since x∗1 is a regular element in grI(R), we get depth grI(R) ≥
d− 1, as desired.

We can now complete the proof of c). Let J = (x1, . . . , xd−1) be a superficial sequence
in I. Since depth grI(R) ≥ d − 1, the linear forms x∗1, . . . , x

∗
d−1 are a regular sequence in

grI(R). This implies grI/J(R/J) ' grI(R)/(x∗1, . . . , x
∗
d−1) and PI(t) = PI/J(t)/(1 − t)d−1,

from which we get

PI/J(t) =
`(R/I) + (e0(I)− `(R/I)− 1)t + ts+1

(1− t)
.

We have dim(R/J) = 1 and e0(I) = e0(I/J), e1(I) = e1(I/J), `(R/I) = ` ((R/J)/(I/J)) ,
so that s(I) = s(I/J). Hence we have two possibilities: either

a) s = 0, e0(I/J) = `
(
(I/J)/(I/J)2

)
and grI/J(R/J) is Cohen-Macaulay,

or
b) s ≥ 1 and e0(I/J) = `

(
(I/J)/(I/J)2

)
+ 1.

The conclusion follows since x1, . . . , xd−1 is a regular sequence in R so that we have
J/IJ ' (R/I)d−1 which implies

`
(
(I/J)/(I/J)2

)
+ (d− 1)`(R/I) = `(I/I2).

2

We may improve the previous bound in case of the maximal ideal. Let R be a local
Cohen–Macaulay ring of dimension d which is not regular; we will write HR(n) and PR(t)
instead of Hm(n) and Pm(t). If h is the embedding codimension of R, that is h = HR(1)−d,
the following inequalities hold (see [8] and [6])

2e0(m)− h− 2 ≤ e1(m) ≤
(

e0(m)
2

)
−

(
h

2

)
13



We define

b = max{n :
(

n

2

)
≤

(
e0(m)

2

)
− e1(m)}

α := e1(m)− 2e0(m) + b + 2.

Since
(
h
2

)
≤

(
e0(m)

2

)
− e1(m), we have b ≥ h. In particular α = e1(m) − 2e0(m) + b + 2 ≥

e1(m)− 2e0(m) + h + 2 ≥ 0.

Theorem 3.4 Let (R,m) be a Cohen–Macaulay local ring of dimension d ≥ 1. We denote
by b and α the integers defined above. Then

a) If d = 1

P 1
R(t) ≤ 1 + bt + (e0(m)− b− 2)t2 + tα+2

(1− t)2
.

b) If d ≥ 2, then

PR(t) ≤ 1 + bt + (e0(m)− b− 2)t2 + tα+2

(1− t)d
.

If the equality holds, then depth grm(R) ≥ d− 1.

Proof. We prove a). One has

1 + bt + (e0(m)− b− 2)t2 + tα+2

(1− t)2
= 1 +

∑
n≥1

[(n− 1)e0(m) + b + 2−min{n− 1, α}]tn.

If we apply Proposition 3.2 in the case I = m we obtain

P 1
R(t) ≤ 1 + ht + (e0(m)− h− 2)t2 + tδ+2

(1− t)2

= 1 +
∑
n≥1

[(n− 1)e0(m) + h + 2−min{n− 1, δ}]tn,

where δ = e1(m)− 2e0(m) + h + 2. We have to prove that for every n ≥ 1

h−min{n− 1, δ} ≤ b−min{n− 1, α}.

Since α = b− h + δ and b ≥ h, we have α ≥ δ. The assertion easily follows.
Part b) can be proved exactly in the same way as the corresponding statement was

proved in Theorem 3.3. 2

14



Remark 3.5 If we apply Corollary 2.5 with I = m, we obtain

PR(t) ≤ 1 + (e0(m)− 1)t
(1− t)d

.

We remark that, if d ≥ 2, the above theorem improves this bound. To prove this, note that
1

(1−t)d−2 ≥ 0, so that we only need to prove that

1 + bt + (e0(m)− b− 2)t2 + tα+2

(1− t)2
≤ 1 + (e0(m)− 1)t

(1− t)2

that is
(n− 1)e0(m) + b + 2−min{n− 1, α} ≤ ne0(m) + 1

or equivalently
e0(m)− b− 1 + min{n− 1, α} ≥ 0

Since
(
b
2

)
≤

(
e0(m)

2

)
− e1(m), we have e0(m) ≥ b + 1 and the assertion follows.

Remark 3.6 Part b) both in Theorem 3.3 and 3.4 does not hold if (R,m) is a Cohen–
Macaulay local ring of dimension one.

Let us consider the Cohen-Macaulay local ring R = k[[u5, u6, u7]]. It is easy to see that
PR(t) = (1 + 2t + 2t2)/(1 − t), e0(m) = 5 and e1(m) = 6, so that b = 3 and α = 1 in the
statement of Theorem 3.4. On the other hand if we take I = m in Theorem 3.3, we get
s = 2. It is clear that

1 + 2t + 2t2

1− t
6≤ 1 + 3t + t3

1− t
,

but

P 1
R(t) =

1 + 2t + 2t2

(1− t)2
≤ 1 + 3t + t3

(1− t)2
.

With the usual notations, for every Cohen-Macaulay local ring R of dimension one, we
know that HR(1) = h + 1 ≤ b + 1 and HR(n) ≤ e0(m) for every n ≥ 2. This gives the
inequality

PR(t) ≤ 1 + bt + (e0(m)− b− 1)t2

(1− t)
.

¿From this we get a bound for P 1
R(t) which is weaker than that proved in a) of Theorem 3.4.

Namely we have

1 + bt + (e0(m)− b− 2)t2 + tα+2

(1− t)2
≤ 1 + bt + (e0(m)− b− 1)t2

(1− t)2
. (3)
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On the other hand, we can easily extend the above inequality to the higher dimensional
case, proving that for any Cohen-Macaulay local ring R of dimension d, we have

PR(t) ≤ 1 + bt + (e0(m)− b− 1)t2

(1− t)d
.

However, because of (3), this bound is weaker than that proved in b) of Theorem 3.4.

Remark 3.7 It easy to see that the bounds given in Theorem 3.4 are tight. Let us consider
the Cohen-Macaulay local ring R = k[[u3, u4, u5]]. We have

PR(t) = (1 + 2t)/(1− t), e0(m) = 3, e1(m) = 2,

so that b = 2 and α = 0. We have

1 + bt + (e0(m)− b− 2)t2 + tα+2 = 1 + 2t,

hence R verifies equality in a), while, if d ≥ 2, R[[Y1, . . . , Yd−1]] verifies equality in b).

4 Finiteness of Hilbert Functions

Let (R,m) be a Cohen–Macaulay local of dimension d and let I be an m–primary ideal of
multiplicity e0 = e0(I). Denote by H(d, e0) the set of all Hilbert functions of the algebras
grI(R). In [13] and [14] it is proved that H(d, e0) is a finite set. Its difficult proof is
accomplished by providing very large bounds on the coefficients of the Hilbert polynomials
and on the Castelnuovo–Mumford regularity of the algebra grI(R) in terms of e0. As their
authors point out, the assertion fails if R is not Cohen–Macaulay.

Our result in this section shows that using a different notion of multiplicity one obtains
a weaker finiteness theorem which applies to arbitrary graded algebras.

Let S be either a graded algebra generated by its elements of degree 1 or a local ring.
An extended degree (see [2]) is a function Deg(·) on finitely generated S–modules (graded
in the case of the former ring) satisfying the following conditions:

(i) If L = Γm(M) is the submodule of elements of M which are annihilated by a power of
the maximal ideal (maximal irrelevant ideal in the graded case) and M = M/L, then

Deg(M) = Deg(M) + `(L).

(ii) (Bertini’s rule) If S has positive depth and h ∈ S is a generic hyperplane section on
M , then

Deg(M) ≥ Deg(M/hM).
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(iii) (The calibration rule) If M is a Cohen–Macaulay module, then

Deg(M) = e0(M),

where e0(M) is the ordinary multiplicity of the module M .

In [18] an instance of such functions was constructed:

Definition 4.1 Let M be a finitely generated graded module over the graded algebra A
and let S be a Gorenstein graded algebra mapping onto A, with maximal graded ideal m.
Assume that dim S = r, dim M = d. The homological degree of M is the integer

hdeg(M) = e0(M) +
r∑

i=r−d+1

(
d− 1

i− r + d− 1

)
· hdeg(Exti

S(M,S))

This expression becomes more compact when dim M = dim S = d > 0:

hdeg(M) = e0(M) +
d∑

i=1

(
d− 1
i− 1

)
· hdeg(Exti

S(M,S)).

It is important to note that hdeg(·) is defined recursively on the dimension of the module;
we refer to [18] and [2] for more technical aspects of these definitions.

Given any cohomological degree, [9] proposed a method to construct another extended
degree function where equality holds in the Bertini’s condition (4). We now restate Propo-
sition 2.4 in the language of these functions.

Corollary 4.2 Let G =
⊕

n≥0 Gn be a standard graded algebra over an Artinian ring and
let Deg(·) be any extended degree function defined on G. If dim G = d ≥ 1 then

PG(t) ≤ `(G0) + (Deg(G)− `(G0)) · t
(1− t)d

.

In other words, for all n ≥ 0

HG(n) ≤ Deg(G)
(

d + n− 2
d− 1

)
+ `(G0)

(
d + n− 2

d− 2

)
.

Proof. Let J be an ideal that is generated by a system of parameters of degree 1 that is
generic for the function Deg(·) chosen; according to [2, Proposition 2.3], `(G/J) ≤ Deg(G).
Now replace `(G/J) by Deg(G) in the estimate of Proposition 2.4. 2

We can prove now the main theorem of this section in which we bound the coefficients
of the Hilbert polynomial of a graded standard algebra solely in terms of the extended
degree. The bounds are explicit but far from being strict since we are only looking for the
application to the finiteness of Hilbert functions.

As usual, we let Deg(·) be an extended degree function on graded algebras.
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Theorem 4.3 Let G be a standard graded algebra over an Artinian ring G0. For every
0 ≤ i ≤ d we define recursively the integers b0 := 1, bi := i + 1 +

∑i−1
j=0(i− j + 1)bj and we

let ei := ei(G). Then, for every 0 ≤ i ≤ d, we have

|ei| ≤ biDeg(G)i+1.

Proof. We induct on d. If d = 0, then e0(G) = Deg(G) and b0 = 1. For d ≥ 1, we set
G = G/hG where h ∈ G1 is a generic hyperplane which is then a parameter in G. We have
dim G = d− 1, ei(G) = ei(G) for i = 0, . . . d− 1 and Deg(G) ≤ Deg(G).

By the induction hypothesis, for i < d we have

|ei| ≤ biDeg(G)i+1 ≤ biDeg(G)i+1.

We recall now that the difference between the Hilbert function of G and its Hilbert
polynomial is given by ([1, Theorem 4.3.5(b)])

HG(n)− PG(n) =
d∑

i=0

(−1)i`(H i
G+

(G)n). (4)

We now make a key point on the vanishing of H i
G+

(G)n, for n ≥ 0. If we denote by ai(G)
the largest n for which this group does not vanish, we have the well-known description of
the Castelnuovo–Mumford regularity of the algebra G,

reg(G) = sup{ai(G) + i | i ≥ 0}.

However, according to [2] Deg(G) > reg(G) so that HG(n) = PG(n) for n ≥ Deg(G).
This implies H1

G(n) = P1
G(n) for n ≥ Deg(G)− 1. If we let r := Deg(G) we get

|ed| ≤ H1
G(r) +

∣∣∣∣∣
d−1∑
i=0

(−1)iei

(
d + r − i

d− i

)∣∣∣∣∣,
where now we bound H1

G(r) by using the estimate given in Corollary 4.2,

H1
G(r) ≤ r

(
d + r − 1

d

)
+ `(G0)

(
d + r − 1

d− 1

)
.

It follows that

|ed| ≤ r

(
d + r − 1

d

)
+ `(G0)

(
d + r − 1

d− 1

)
+

d−1∑
i=0

|ei|
(

d + r − i

d− i

)
.
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Now, as in the proof of Corollary 4.2, we have

`(G0) = `(G/G+) ≤ `(G/J) ≤ r.

We will use the inequalities

r ≤ r2,

(
d + r − i

d− i

)
≤ rd−i(d− i + 1),

(
d + r − 1

d

)
≤ rd

and we get

|ed| ≤ rd+1 + rd+1d +
d−1∑
i=0

bir
i+1rd−i(d− i + 1) = rd+1bd.

This gives the desired assertion. 2

Corollary 4.4 Given two positive integers A and d, there exists only a finite number of
Hilbert functions associated to standard graded algebra G over Artinian rings such that
dim G = d and DegG ≤ A.

Proof. The finiteness of the number of Hilbert functions follows from the finiteness of the
possible Hilbert polynomials, after remarking that Corollary 4.2 takes care of the initial
values of the Hilbert function. 2
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