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Abstract. Let (A,M) be a local ring of positive dimension d and let I be an
M–primary ideal. We denote by r(I) the reduction number of I, such that the
smallest integer r such that Ir+1 = JIr for some reduction J of I. In this paper
we give an upper bound on r(I) in terms of numerical invariants which are related
with the Hilbert coefficients of I when A is Cohen-Macaulay. If d = 1 it is known
that r(I) ≤ e(I)−1 where e(I) denotes the multiplicity of I. If d ≤ 2, in Corollary
1.5 we prove r(I) ≤ e1(I) − e(I) + λ(A/I) + 1 where e1(I) is the first Hilbert
coefficient of I. ¿From this bound several results follow. Theorem 1.3 gives an
upper bound on r(I) in a more general setting.

Introduction

Let (A,M) be a local ring of dimension d and let I be an M−primary ideal.
If J is a reduction of I, we will denote by rJ(I) the smallest integer r such that
Ir+1 = JIr and it will be called the reduction number of I with respect to J.

The reductions of I are ordered by inclusion with the smallest ones referred to
as minimal reductions. The smallest reduction number attained among all minimal
reductions is called the reduction number of I and it will be noted by r(I). If
(A,M) is a local ring with infinite residue field, then everyM−primary ideal I has
a minimal reduction and it is minimally generated by d elements.

Let A be a one dimensional Cohen-Macaulay local ring, we denote by (x) a mini-
mal reduction of I and by HI(n) := λ(In/In+1) the Hilbert function of I where λ( )
is the length as A−module. Then

HI(n) = e(I)− λ(In+1/xIn)

where e(I) is the multiplicity of I.
¿From this equality it is clear that in this case the reduction number does not

depend on x. More generaly if A is a d−dimensional Cohen-Macaulay local ring
and J is a minimal reduction of I, we denote by G := grI(A) = ⊕n≥0I

n/In+1 the
associated graded ring of I. It is well known that if depth G ≥ d − 1, then rJ(I)
does not depend on the minimal reduction J.
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Further, if A is a one dimensional Cohen-Macaulay local ring, by a generalization
of a Macaulay’s theorem (see [B, Corollary 2.11] ), we deduce

HI(n) = e(I)− λ(In+1/xIn) ≥ min{ e(I), n+ 1}

¿From this we get Ie(I) = xIe(I)−1 and then r(I) ≤ e(I)− 1.
This bound can be generalized. For the reduction number of the maximal ideal
M of a local Cohen Macaulay ring A of dimension d > 0, J. Sally [S1] proved that

r(M) ≤ d! e(A)− 1

W. Vasconcelos ([VW, Remark 6.16] ) improved this bound and, for anyM−primary
ideal I, he proved

r(I) ≤ d e(I)− 2d+ 1

This bound is the best known estimate for the reduction number of I.
In this paper we prove a different bound for r(I) which involves different numerical

invariants of I (see Theorem 1.3). The new formula is an improvement for special
ideals. For example, we consider a Cohen-Macaulay local ring A and let e1(I) be
the first coefficient of the Hilbert polynomial of I. If e1(I) is smallest possible, that
is e1(I) = e(I) − λ(A/I), then r(I) = 1 (see [H] and [O]). In this case r(I) is in
general far from the integer de(I)− 2d+ 1. Corollary 1.9 shows that this result and
others can be obtained as consequence of the new bound.

In other cases, in order to prove good properties of the associated graded ring G
of I, we need to control the reduction number of I. For example we recall that, by
[VV], if rJ(M) ≤ ∈ for some minimal reduction J ofM, then the associated graded
ring G ofM is Cohen-Macaulay. Furthermore Sally in [S2] stated that if we denote
by v the embedding dimension of A and e(A) = v−d+2, then depth G ≥ d−1. We
recall that, in the same paper, she reduced the problem to prove a condition on the
reduction number ofM. Several papers ([RV],[W], [E],[CPV] and [R]) deal with this
problem. Essentially the proof of our main result comes from a deeper investigation
of the methods developed in [RV] and [R].

1. The bound on the reduction number

Let (A,M) be a local ring of positive dimension d and let I be an M−primary
ideal. We recall some general facts.

For every n we consider the chain of ideals

In ⊆ In+1 : I ⊆ In+2 : I2 ⊆ · · · ⊆ In+k : Ik ⊆ · · ·
This chain stabilizes at an ideal which was denoted by Ratliff and Rush as

Ĩn :=
⋃
k≥1

(In+k : Ik).

If depth A is positive, then Ĩn = In for n >> 0. In particular Ĩn+1/JĨn is a
finite A−module for any minimal reduction J of I. We will denote by λ the length
function on A−modules. We define for every n ≥ 0

ρn := λ(Ĩn+1/JĨn).



A BOUND ON THE REDUCTION NUMBER OF A PRIMARY IDEAL 3

These invariants come from to the homological properties of I and, if A is Cohen-
Macaulay, they can be related to the Hilbert coefficients of I (see [HM, Section
4] ). It will be useful in the following to recall that, if A is Cohen Macaulay and
dimA ≤ 2, then

e1(I) =
∑
n≥0

ρn

Let J be a minimal reduction of I; for every n ≥ 0, we denote by vn the following
integers

vn := λ(In+1/JIn)

We recall that, if A is a one dimensional Cohen-Macaulay local ring, we have
HI(n) = e(I)− vn and in particular

e1(I) =
s−1∑
n=0

vn

where s is the reduction number of I.

Lemma 1.1. Let (A,M) be a local ring of positive depth and let I be anM−primary
ideal. If J is a minimal reduction of I and In+1 ∩ J = JIn for some positive integer
n, then

ρn − vn = λ(Ĩn+1/JĨn + In+1)

Proof. We have

JĨn ⊆ JĨn + In+1 ⊆ Ĩn+1

hence

λ(Ĩn+1/JĨn + In+1) = ρn − λ(JĨn + In+1/JĨn) = ρn − λ(In+1/JĨn ∩ In+1).

Since
JIn ⊆ JĨn ∩ In+1 ⊆ In+1 ∩ J = JIn,

we get JIn = JĨn ∩ In+1 and the conclusion follows. �

The next result is a generalization of [RV, Proposition 2.4] and of [E, Proposition
2.5]. It will be a crucial point in our main result and so we include here a proof also
despite being close to the proofs of the quoted Propositions.

Let R(I) := ⊕n≥0I
n = A[IT ] be the Rees algebra of I and let M be a graded

R(I)−module. For every n ≥ 0, we define

AnnIn(M) := {x ∈ In : xT nM = 0}
If J is an ideal of A such that J ⊆ I, then we may view M as a graded R(J) =

A[JT ]−module. On this module R(I) acts as endomorphisms over R(J). We will
denote by R(J)+ the ideal ⊕n>0J

n.
Note the following isomorphism of R(J)−modules which will be important in our

arguments.
For every n ≥ 0 we have

(M/R(J)+M)n 'Mn/(J
nM0 + Jn−1M1 + · · ·+ JMn−1)
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Proposition 1.2. Let I and J be ideals of a local ring A with J ⊆ I and let M
be a R(I)−module of finite length as A−module. Let ν be the minimal number of
generators of M/R(J)+M as A−module, then

Iν = J Iν−1 + AnnIν (M)

Proof. Let p be the largest integer such that Mp 6= 0. For all n = 0, . . . , p we
consider the elements m1n, . . . ,mνnn ∈ Mn such that the corresponding elements
in (M/R(J)+M)n form a minimal system of generators as A−module. We have
ν =

∑p
n=0 νn and |(in)| = ν if n = 0, . . . , p and i = 1, . . . , νn.

If ain is an element of I, since (M/R(J)+M)n+1 'Mn+1/(J
n+1M0 +JnM1 + · · ·+

JMn), there exist c(in)(kj) ∈ Jn+1−j such that

(ainT )min =
n+1∑
j=0

νj∑
k=1

c(in)(kj)T
n+1−jmkj

with mk p+1 = 0 for every k.
Thus if we consider the relations

n+1∑
j=0

νj∑
k=1

c(in)(kj)T
n+1−jmkj − (ainT )min = 0

we get a system of ν linear equations in the ν variables mkj where j = 0, . . . , p and
k = 1, . . . , νj. The corresponding matrix C has size ν × ν and entries which are
homogeneous elements in the Rees ring R(I). Since the (in)(kj)-entry has degree
n + 1 − j if n + 1 ≥ j and is zero otherwise, we may assign degree n + 1 − j to
the (in)(kj)-entry of C whatsoever. This implies that every two by two minor of
C is an homogenous element, hence its determinant det(C) is homogeneous too
and its degree is ν because the elements on the diagonal (in) = (kj), which are
(c(in)(in) − ain)T, all have degree 1.

If a =
∏
ain for n = 0, . . . , p and i = 1, . . . , νn, it is easy to see that

det(C) = (−1)ν(a− σ)T ν

for a suitable σ ∈ JIν−1. Since by Cayley-Hamilton theorem, det(C) kills all the
variables min, for n = 0, . . . , p and i = 1, . . . , νn, we get

(a− σ)T νM = 0

and hence a− σ ∈ AnnIν (M).
We may repeat the same procedure for all monomial a =

∏
ain in Iν and the

result follows. �

In the following, if J is a minimal reduction of I, we denote by

SJ := {n ∈ N / Ij+1 ∩ J = JIj for all j ≤ n}

Observe that 0 ∈ SJ and, if I is integrally closed, then 1 ∈ SJ .
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Theorem 1.3. Let (A,M) be a local ring of positive depth and let I be an M–
primary ideal. If J is a minimal reduction of I and n ∈ SJ , then

rJ(I) ≤
∑
i≥0

ρi + n + 1 −
n∑
i=0

vi

Proof. We denote by M the R(I)−graded module M := ⊕i≥1Ĩ i/I
i, so that in par-

ticular M is a finite A−module. We recall that for every j ≥ 0 we have

(M/R(J)+M)j+1 'Mj+1/(J
j+1M0 + J jM1 + · · ·+ JMj)

and it is easy to see that

Mj+1/(J
j+1M0 + J jM1 + · · ·+ JMj) ' Ĩj+1/JĨj + Ij+1

We have λ(Ĩj+1/JĨj + Ij+1) ≤ ρj = λ(Ĩj+1/JĨj) and the equality holds if and only

if Ij+1 ⊆ JĨj. Let k be the least integer j such that Ij+1 ⊆ JĨj.

Let νj be the minimal number of generators of Ĩj+1/JĨj + Ij+1 as A−module.

Clearly νj ≤ λ(Ĩj+1/JĨj + Ij+1) for every j. If ν =
∑
j≥0 νj, by Proposition 1.2, we

get

Iν = JIν−1 + AnnIν (M)

and therefore

Iν+k+1 = IνIk+1 = Ik+1(JIν−1 + AnnIν (M)) =

= JIν+k + Ik+1AnnIν (M) ⊆ JIν+k + JĨkAnnIν (M) ⊆ JIν+k.

It follows that

rJ(I) ≤ ν + k =
∑
j≥0

νj + k ≤
∑
j≥0

λ(Ĩj+1/JĨj + Ij+1) + k.

Now if n ∈ SJ , then by Lemma 1.1, ρj = vj + λ(Ĩj+1/JĨj + Ij+1) for every j ≤ n.
In particular

rJ(I) ≤
n∑
j=0

(ρj − vj) +
∑

j≥n+1

λ(Ĩj+1/JĨj + Ij+1) + k.

If k ≤ n + 1, the result follows. We may suppose k ≥ n + 2, then by the true
definition of k, we have

rJ(I) ≤
n∑
j=0

(ρj − vj) +
k−1∑
j=n+1

(ρj − 1) +
∑
j≥k

ρj + k =

=
n∑
j=0

(ρj − vj) +
∑

j≥n+1

ρj − (k − 1− n) + k =
∑
j≥0

ρj + n+ 1−
n∑
j=0

vj.

�
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Remark 1.4. If depth G > 0 or equivalently Ĩj = Ij for all j, by Theorem 1.3 we
obtain

rJ(I) ≤ n + 1 +
∑
i≥n+1

vi

for any minimal reduction J of I and n ∈ SJ .

If (A,M) is a Cohen-Macaulay local ring of dimension d ≤ 2, then e1(I) =
∑
j≥0 ρj

(see [HM]). Since 0 ∈ SJ and v0 = λ(I/J) = e(I) − λ(A/I), by Theorem 1.3 we
obtain the following result.

Corollary 1.5. Let (A,M) be a Cohen-Macaulay local ring of dimension d ≤ 2, I
an M−primary ideal and J a minimal reduction of I. Then

rJ(I) ≤ e1(I)− e(I) + λ(A/I) + 1

The following example shows that the maximum value can be reached.

Example 1.6. We consider A = k[|X, Y, Z|]/(Z3) and the ideal I = (x2, y2, xz, yz)
in A, then J = (x2, y2) is a minimal reduction of I. We have e1(I) = 8, e(I) = 12,
λ(A/I) = 6 and rJ(I) = 3.

Let F be the Ratliff-Rush filtration and we consider G(F) = ⊕n≥0Ĩn/Ĩn+1. We
remark that Corollary 1.5 holds under the weaker assumption depth G(F) ≥ d−1. In
fact, if depth G(F) ≥ d−1, then by [HM, Proposition 4.6] , we have e1(I) =

∑
j≥0 ρj

and we can get the same conclusion.

The next results shows that in some case it is possible to control the depth of the
associated graded ring G by using information on the reduction number of I.

¿From Corollary 1.5 we obtain a proof of a well known conjecture stated by Sally
in [S2]. The conjecture was proved in [RV] and [W] in the case of the maximal ideal
and in [CPV], [E], [R] for any M–primary ideal. We give now a short proof of this
fact by using the results of this paper. More details concerning the first part of the
proof can be found in [S2], [RV] and [R].

We recall that an element x in I is called superficial for I if there exists an integer
c > 0 such that

(In : x) ∩ Ic = In−1

for every n > c. If the residue field is infinite, superficial elements always exist and
if depth A is positive, every superficial element for I is also a regular element in A.
By passing, if needed, to the local ring A[X]MA[X] we may assume that the residue
field is infinite.

A sequence x1, . . . , xr in the local ring (A,M) is called a superficial sequence for
I, if x1 is superficial for I and xi is superficial for I/(x1, . . . , xi−1) for 2 ≤ i ≤ r.

If A is a local ring of dimension d > 0, then we can find a maximal superficial
sequence x1, . . . , xd for I.

If J = (x1, . . . , xr), then the following equality on the Hilbert coefficients holds:

ei(A) = ei(A/J)

for every i = 0, . . . , d− r.
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Moreover there is a very important trick (the so called Sally machine) to reduce
dimension in question relating to depth properties of the associated graded ring (see
[HM, Lemma 2.2] ). We have

depthgrI(A) ≥ r + 1 ⇐⇒ depthgrI/J(A/J) ≥ 1

Remark that if J is an ideal generated by a maximal superficial sequence in I, then
J is a minimal reduction of I. Conversely from [S, Theorem 4], if J is a minimal
reduction of I, then there exists a minimal system of generators of J which is a
maximal superficial sequence for I.

Corollary 1.7. Let (A,M) be a Cohen-Macaulay local ring of dimension d and I
an M–primary ideal. If

e(I) = λ(I/I2) + (1− d)λ(A/I) + 1

then depth G ≥ d− 1.

Proof. From [V], the assumption e(I) = λ(I/I2) + (1 − d)λ(A/I) + 1 is equivalent
to λ(I2/JI) = 1. Now, by using the Sally machine, we may reduce the problem to
the case d = 2. Let x, y be a superficial sequence for I and J = (x, y).

Since λ(I2/JI) = 1 we may write I2 = JI + (ab) for some a and b in I. Then for
every n ≥ 1 we have a surjection from In+1/JIn to In+2/JIn+1 by multiplication by
a and consequently λ(In+1/JIn) ≤ 1 for every n ≥ 1.

We consider I = I/(x) and let s be the reduction number of I. We may suppose
s ≥ 2, otherwise again by the Sally machine we have G Cohen-Macaulay. It is clear

that λ(I
j+1
/yI

j
) = 1 = λ(Ij+1/JIj) for j = 1, . . . , s− 1 and zero otherwise.

For every j ≥ 0 there is an exact sequence

0 −→ Ij : x/Ij : J
y−→ Ij+1 : x/Ij

x−→ Ij+1/JIj −→ I
j+1
/yI

j −→ 0.

By induction on j it is easy to see that if we prove rJ(I) ≤ s, then Ij+1 : x = Ij

for every j and so depth G > 0, as required. But e1(I) =
∑
j≥0 λ(I

j+1
/yI

j
) =

e(I) − λ(A/I) + s − 1. Since e1(I) = e1(I), the conclusion follows by Corollary
1.5. �

Remark 1.8. Let (A,M) be a Cohen-Macaulay local ring of dimension d ≤ 2 and
I an M–primary ideal. If J is a minimal reduction of I such that I2 ∩ J = JI,
we may improve the bound obtained in Corollary 1.5. In this case 1 ∈ SJ and so,
by Theorem 1.3, we have rJ(I) ≤ ∑

i≥0 ρi + 2 − v0 − v1. Now
∑
j≥0 ρj = e1(I),

v0 = e(I)−λ(A/I) and, by [V], v1 = λ(I2/JI) = e(I)−λ(I/I2)+λ(A/I). It follows

rJ(I) ≤ e1(I) + 2− e(I) + λ(A/I)− λ(I2/JI) = e1(I)− 2e(I) + λ(I/I2) + 2

We end by giving easy proofs of a collection of results proved in [H], [O], [HM],
[I] and [GR] using now the techniques developed in this paper.

Corollary 1.9. Let (A,M) be a Cohen-Macaulay local ring of dimension d and I
an M–primary ideal.
i) If e1(I) = e(I)− λ(A/I), then r(I) ≤ 1 and G is Cohen-Macaulay.
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ii) If e1(I) = e(I) − λ(A/I) + 1 and I2 ∩ J = JI for some minimal reduction J of
I, then r(I) ≤ 2 and G is Cohen-Macaulay.
iii) If e1(I) = e(I)− λ(A/I) + 2 and I2 ∩ J = JI for some minimal reduction J of
I, then r(I) ≤ 3 and depth G ≥ d− 1.

Proof. By using the Sally machine and the good behaviour of e1(I) modulo superfi-
cial elements, we may reduce the first two statements to dimension one and the last
to dimension two.
If e1(I) = e(I)− λ(A/I), by Corollary 1.5 we have r(I) ≤ 1. Then I2 = JI and by
[VV] it follows that G is Cohen-Macaulay.
If e1(I) = e(I)−λ(A/I) + 1, by Corollary 1.5 we have r(I) ≤ 2. Then I3 = JI2 and
I2 ∩ J = JI and again by [VV] it follows that G is Cohen-Macaulay.
If e1(I) = e(I) − λ(A/I) + 2, by Corollary 1.5 we have r(I) ≤ 3. If r(I) ≤ 2,
then G is Cohen-Macaulay as before, otherwise r(I) = 3. By Remark 1.8, we have
r(I) = 3 ≤ 4− λ(I2/JI) and the result follows by Corollary 1.7.

�
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