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Abstract

The multiplicity of an m-primary ideal I of a Cohen-Macaulay local ring (A, m)
of dimension d can be written as e(I) = ANI/I?) — (d — 1)A\(A/I) + K — 1 for some
integer K > 1. In the case K = 1,2, the Hilbert function of I and the depth of the
associated graded ring of A with respect to I are very well understood. In this paper
we are dealing with the case K = 3 and we determine the possible Hilbert functions of
stretched ideals whose Cohen-Macaulay type is not too big. Our main result extends
to a considerable extent a deep result of J. Sally who proved that the associated graded
ring of a Gorenstein local ring with embedding dimension equal to e(m) + d — 3, is
Cohen-Macaulay.

Introduction

Let (A, m) be a local Cohen-Macaulay ring of dimension d and multiplicity e. A good
measure of the singularity at (A, m) is the Hilbert function of (A, m). This is the Hilbert
function H4(t) of the associated graded ring grmA = @;(m!/m*1) of A, which assigns to
each non-negative integer ¢ the dimension over A/m of the vector space m’/m‘*!. The main
problem is that, in general, the ring grmA has few, if any, good properties so that what is
known about Hilbert functions for nice graded algebras is often not applicable. So the task
is twofold: try to get information about the Hilbert function in spite of bad properties of
grmA and try to find properties of (A, m) which lead to reasonable associated graded rings
grmA.

One way to recognize some Cohen-Macaulay local ring with good associated graded ring
is the use of the fact that v, the embedding dimension of A, satisfies d < v <e+d — 1.
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If we put h := v — d, the embedded codimension of A, then e > h + 1 and we can write
e = h + K for some integer K > 1. If K =1, then e = h+ 1 and gr,A is Cohen-Macaulay
with Hilbert series Pa(2) := > o0 Ha(t)z! = (1 + hz)/(1 — 2)? (see [?]). If K = 2 then
grmA has depth at least d — 1 and Pa(z) = (1 + hz + 2°)/(1 — 2)? for some integer s,
2 < s < h+1 (see [?]). Finally if K = 3 and A is Gorenstein, then grmA is Cohen-
Macaulay and Pa(z) = (1 + hz + 22 + 2%) /(1 — 2)? (see [?]). The proof of this far reaching
result needs several pages of very tricky and clever computations leading to the description
of a suitable minimal set of generators of the powers of the maximal ideal of A. In the
following, we will often refer to this result which will be simply called Sally’s theorem.

In [?] we proved that if K = 3 and the Cohen-Macaulay type 7 of A verifies 7 < h, then
grmA has depth at least d—1 and Pa(z) = (1+hz+2842°%)/(1—2)¢ where 2 <t < s < 742
and t < s if 7 = 1. This strongly extends Sally’s theorem but does not complete the list
of the possible Hilbert functions in the case K = 3. The main question being whether the
depth of grnA is at least d — 1 also in the case 7 > h.

Since, by geometric reasons, one needs to blow up m-primary ideals different from m,
we are lead to consider the more general problem of determining the Hilbert function of
an m-primary ideal I of the local Cohen-Macaulay ring (A, m). This is the Hilbert function
of the associated graded ring G := gry(A) = @;(I'/I't!) of A with respect to the I-adic
filtration, namely the function Hj(t) = A\(I*/I'™!) where A(M) stands for the length of the
(A/I)-module M. One knows that e(I) > A\(I/1?) — (d—1)\(A/I), hence, if we denote by h
the embedding codimension of I, which is by definition the integer h := A(I/I?) — d\(A/I),
we have e(I) > h + A(A/I) and we can write e(I) = h + A(A/I) + K — 1 for some integer
K>1.

If K = 1, the associated graded ring G is Cohen-Macaulay and its Hilbert series is
Pr(z) =350 Hi(j)2 = (MA/I) + hz) /(1—2) (see [7]). If K = 2, then depth(G) > d—1
and Pr(z) = (MA/I) 4+ hz +2%) /(1 — 2)? for some s, 2 < s < h — AN(A/I) (see [?]). The
next step is the case K = 3, which means e(I) = h+ A(A/I) + 2, and the task is to extend
Sally’s theorem to this more general setting.

The first remark is that, in the primary case, the assumption A is Gorenstein does not
imply that G is Cohen-Macaulay. For example, if we consider the Gorenstein local ring
A=k Htg‘,tﬁ,tg]] and its m-primary ideal I = (¢°,t%), then it easy to see that Pj(z) =
(2+ 2+ 22 +2%)/(1 - 2) so that e(I) = h+ A(A/I) + 2 but the associated graded ring G is
not Cohen-Macaulay.

To throw light upon the problem, we must recall that a main ingredient in the proof
of Sally’s theorem is that, under the given assumptions, for any ideal J generated by a
maximal superficial sequence in m, the ideal (m/.J)? is a principal ideal. In the terminology
of [?], A is a stretched Gorenstein local ring. This suggests the following definition: given
an m-primary ideal I, we say that I is stretched if there exists an ideal J generated by a
maximal superficial sequence in I, such that



a) I’NJ =1J and

b) Hy/z(2) = 1.

This definition depends upon the choice of .J, nevertheless it works nice for our proposal.
Condition a), which holds true for every J if I = m, is what we need in order to preserve
the embedding codimension modulo a superficial element.

Stretched m-primary ideals and their main properties are considered in section 2 of the
paper. We first prove that the associated graded ring G of a stretched ideal I is Cohen-
Macaulay if and only if 1%+ = JI¥ (see Theorem ??). Thus it is natural to consider those
stretched ideals I such that I5*! C JIK~1 a property which has relevant consequences
investigated in Section 3. We know by [?], Theorem 3.2, that the maximal ideal of a Cohen-
Macaulay local ring (A, m) has this property if e = h + 3 and 7 < h, where 7 is the Cohen-
Macaulay type of A. Hence, as in [?], for a stretched ideal I we set 7(I) :=A(J : I)NI/J)
and we say that 7(I) is the Cohen-Macaulay type of I.

As in the case of the maximal ideal, we are able to prove that the associated graded
ring of a stretched ideal I such that 7(I) < h + 1 — A(A/I), has a small amount of
good behaviour in that IX*! C JI? (see Theorem ??). Hence, if K = 3, then I5+! C
JIK=1. In Section 3, by using a deep result of [?] (see also [?], [?] and [?]), we prove
that a stretched ideal I such that I5+! C JI®~1 has depth(G) > d — 1 and P;(z) =
(MA/D) 4+ hz+ 2%+ + 2571+ 2%) /(1—2)¢ for some s > K (see Proposition ??). Thus,
in order to complete the description of the Hilbert series of a stretched ideal I such that
ITE+1 C JI%~1 we may reduce the problem to the one-dimensional case and need to look
for a good upper bound for the degree s of the h-polynomial of I. This is done in Proposition
7?7 for the general case and in Theorem 77 in our favorite case, K = 3, when we are able
to prove that s < 7+ 2. This gives the main result of the paper which is formulated and
proved in Theorem ?7. It says that if I is an integrally closed stretched ideal such that
K =3and I C JI?, then depth(G) > d—1 and Py(z) = (MA/I) + hz + 2% + 2%) /(1 —2)¢
for some integer s such that 3 < s < 74 2. The desired extension of Sally’s theorem is now
a trivial consequence of this result.

Some of the results of this paper have been conjectured after (and confirmed by) explicit
computations performed by using the computer algebra system CoCoA[?].

1 Preliminaries

Let (A, m) be a local ring of dimension d and residue field k. If I is an m-primary ideal, the
Hilbert Function Hy( ) of I is defined as

Hiy(t) = Ha(t) = Aay (I'/T)

where G is the associated graded ring of A with respect to the I-adic filtration, that is
G:=gri(A) = EBtzo(It/ItJrl).



The generating function of this numerical function is the power series

Pi(z) =) H(t)2".

t>0

This series is called the Hilbert series of I. It is well known that this series is rational
and that, even more, there exists a polynomial hr(z) with integers coefficients such that
hr(1) # 0 and

hi(z)
(1—2)4

The polynomial hy(z) = hg + h1z + ... hsz® is called the h-polynomial of I and the vector
(ho, h1,...,hs) the h-vector of I.

P[(Z) =

It is clear that we have
ho = H1(0) = A(A/I), hy = NI /T%) — d \(A/T).

The integer hy will be indicated by h(I) or simply by h if the ideal I is clear from the
contest.

For every i > 0 we let

(i)
ei(I) := i (1) and (

il i

X+i> _ (X+1i)...(X+1)

In particular eg(/) = hs(1) and the polynomial

d—1 .
px) = e (0

1=0

has rational coefficients and degree d — 1. Further, for every n >> 0, pr(n) = Hr(n). The
polynomial p;(X) is called the Hilbert polynomial of I and the integer eo(I) = hy(1) is called
the multiplicity of I, often indicated simply by e(I). If A is artinian and I is any non-zero
ideal of A, then e(I) = hr(1) = A(A).

We recall that if A has positive dimension, an element x in [ is called superficial for I
if there exists an integer ¢ > 0 such that

(I":z)nI¢=1"1

for every n > c.
It is easy to see that a superficial element x is not in I? and that z is superficial for I if
and only if z* := T € I/I? does not belong to the relevant associated primes of G. Hence,



if the residue field is infinite, superficial elements always exist. Further, if A has positive
depth, every superficial element for I is also a regular element in A.

A sequence z1,...,z, in the local ring (A, m) is called a superficial sequence for I, if
x1 is superficial for I and 7; is superficial for I/(z1,...,2,—1) for 2 < i < r. By passing, if
needed, to the local ring A[X]y, x), we may assume that the residue field is infinite. Hence
if depth(A) > r, there exists a superficial sequence z1,...,z, for I and every superficial
sequence is also a regular sequence in A. Such a sequence has the right properties for a
good behaviour of the numerical invariants under reduction modulo the ideal it generates.

Let 1,...,7, be a superficial sequence for I and put I := I/(x1,...,2,). Then, for
i=0,...,d—r, we have ¢;(I) = e;(I). Further the following conditions are equivalent:
Pr(2)

depth(G) > r <= P(z) = (=D hi(z) = hi(z) <= Pn(z1,. . 20) = T2, ..o, 2p)
for every j > 1.
If J is the ideal generated by a maximal superficial sequence in I, we know by [?] that

e(I) = AI/I%) = (d — DANA/I) + XI?/JI) = h+ N(A/I) + A(I?/JI)
so that A(I%2/JI) does not depend on J and we put K := A\(I2/JI) + 1. Then we have

e(I) = h+ K+ MNA/I) — 1.

Let us now recall a construction due to Ratliff and Rush (see [?]). For every n we have
a chain of ideals

mcrttrecrt?.Pc...ocrrtkofc.

This chain stabilizes at an ideal which we will denote by

I = U(I”+k 1%,
k>1

For every i and j we have I’ C It and IiJ - I+, Further, if x is superficial for I and
a non zero-divisor, it is an easy consequence of the Artin Rees lemma that for every integer
§ >> 0 we have I7 : x = I’~!. From this we easily get I’ = .ﬁ, for ¢ >> 0.

Finally, for every n > 0, we have In1 .z = I7 which implies that G has positive depth
if and only if the equality I = I’ holds for every i > 0.

In the following we assume that (A, m) is a Cohen-Macaulay local ring of dimension d
and [ is an m-primary ideal in A. We let J be the ideal generated by 1, ..., x4, a maximal
superficial sequence for I. Then e(I) =e(I/J) = A(A/J) and we define for every j > 0



p; = NI/ JI0), aj = NI7 /1), v; = AT}/ JD).
For example we have ag = 0, vg = A(I/J) = A(A/J) — MA/I) =e(I) — M(A/I) and
vn=K-1=e(I)—XA/I)—h. (1)

When the ring A has dimension one, we have more relevant properties of the integers
already introduced. Hence, from now on, we are assuming d = 1 and we let J = z A, where
x is a superficial element of the m-primary ideal I. Further we let as above

hi(z) =ho+hiz+ -+ hgz®
where hs; # 0. Hence, in the following, s is the degree of the h-polynomial of I. We have
hi = Hy(i) — Hyli — 1) @)
for every i > 1 so that e(l) = hr(1) = Y7 hi = Hi(s).
It is well known, see [?], that for every j > 0 we have

e(I) = H(j) + vj. (3)
and

pj +aj = vj+ a1 (4)

Since we have seen that e(I) = Hj(s), from (??) we get vs = 0. On the other hand from
(?7) and (77?) we get

hl' = Vij—1 — U; (5)
for every ¢ > 1, hence vs_1 = hs > 0. Since v; = 0 implies vy = 0 for every ¢ > j, we have

v; >0 if j<s—1
{vz0 iz ©
j = J=s

so that s is exactly the reduction number of I. We have I*t! = zI°, from which we get
I5Tt = 2T for every t > 0.

Let j be an integer, j > s, and let t be a positive integer such that I/ = 7+t : It we
have ~

=[Pttt Pt gt = pdtt=sys . gt = 2J=515 C [V,

so that a; = 0 for every j > s. Hence ag = a; = 0 and by (??) and (??7) we get



s s—1 s—1
er(l) = jhi =Y vi=>Y p; (7)
j=0 5=0 =0

Exactly in the same way as we proved Proposition 1.4 in [?], we can prove now the
following result which gives a lower bound for the integers a; in terms of the integers v;.

Proposition 1.1 Letd =1 and z be a superficial element of the m-primary ideal I. Further
let 7 > 1 and t > 0 be integers such that j +t < s. Then

Qj > Vjtt—1 — Uj—1 + t.

By using this result we get a rough but useful upper bound for the reduction number s
of I. This result should be compared with Proposition 1.5 in [?].

Proposition 1.2 Let d =1 and x be a superficial element of the m-primary ideal I. Then
s<1+A ((mA 1) mI+f2/:cA> + (I /D).
Proof. We have L
(xA:I)NI+12D>12D>1* >zl

and _
(xA:I)NI+1?DxADxl.

(From this we get A\(A/I)+ A <(a:A 1) ﬂI+I~2/9:A) =v;+az+A ((mA 1) ﬂI+I~2/I~2> .
By using the above proposition with j =2 and ¢t = s — 2, we get v1 + a2 > vs_1 +5— 2.
On the other hand the map

AT S (AN I+ I12/12

is injective and vs_1 > 1. Hence

MA/T) + A ((xA )N+ I~2/:(:A> > v1+5— 2+ AMA/T) > s — 1+ A(A/T)

and the conclusion follows. O



2 Stretched ideals

Let I be an m-primary ideal of the d-dimensional Cohen-Macaulay local ring (A, m). We
have seen in the first section that the Hilbert Series of I can be written as

Ptz = Ym0 = 1

t>0

where hy(z) = hg + h1z + ... hsz® is the h-polynomial of I. We have
h(I) = hy = MI/I?) — dA\(A/T)

hence, when I = m, we get h; = A\(m/m?) — d. This is the reason why this integer is often
called the embedded codimension of A.

One of the main properties of this integer is that it does not change modulo a superficial
sequence. In the case of an m-primary ideal, this property does not hold anymore, but one
needs the additional assumption I2 N J = I.J, which trivially holds if I = m.

Lemma 2.1 Let I be an m-primary ideal and let J be the ideal generated by a maximal
superficial sequence (x1,...,mq) for I. Given an integer r < d, we let I = I/(z1,...,z,) and

A=Af(x1,.xy). IFI2NJ = 1] then

Proof. If z € J is a superficial element for I and 1> N J = IJ, it is clear that
(I/zA)? N (J/zA) = (I/zA)(J/zA),
hence we may assume r = 1 and then we let z = x1. We have a short exact sequence
0— (I2+2A)/I2 > I/I? > T/T ~I/(I2 + zA) — 0

Now it is clear that (1% +xA)/I? ~ 2A/(I? NxzA) = xA/xl ~ A/I, where the equality
I’ Nz A = zI comes from the fact that 1, o, ..., 24 form a regular sequence in A.
Since A/I ~ A/I, from the above exact sequence we get

W(I) = MI/T) — (d — DA(A/T) = A(I/I2) — dA(A/T) = h(I).
Od

Under the light of this lemma, we come to the main definition of this note. It was
inspired by the work of J.Sally (see [?]) and motivated the title of this paper.



Definition 2.2 Given an m-primary ideal I, we say that I is stretched if there exists an
ideal J generated by a mazximal superficial sequence for I, such that

a) I’NJ=1J

b) Hy/p(2) = 1.

For example the maxiaml ideal of a Cohen-Macaulay local ring of embedding dimension
e + d — 2 or of a Gorenstein local ring of embedding dimension e + d — 3 is stretched.

We remark that the condition Hp, 7(2) = 1 depends upon the choice of J. An example
already appeared in [?], but the construction there heavily relies on the fact that the residue
field was not algebraically closed, beeing the field of real numbers. We give here an other
example which does not depend on the residue field k.

Example 2.3 Let us consider the ring
and let I be the maximal ideal of A. Then both t5 and t® + 7 are superficial element in I,

but HI/tGA(2) - 2 and HI/(t6+t7)A(2) - 1

In the following, a stretched m-primary ideal I will come always equipped with an ideal
J generated by a maximal superficial sequence for I such that 1?NJ = I.J and H; s7(2) = 1.
We collect some easy properties of stretched ideals.

Lemma 2.4 For a stretched ideal I the following properties hold:
1) e(I) > NA/I)+ h+ 1.
2) For every n > 1 we have I"*! = JI"™ + (a"b), where a,b € I, a,b ¢ J.
3)I=(b)+(J:a)NI.
4) For every n > 2 we have v, < vp_1.
5) For every n > 2 we have Hy;j(n) < 1.
6) For every n > 1 we have ab m C 24 g,

7)If IN(J:a)#IN(J: 1), then vy <.

Proof. 1) We have Hy,;(0) = MA/I), H;/;(1) = h(I/J) = h(I) = h and Hj/;(2) = 1.
This implies
e(l)y=e(I/J)> ANA/I)+h+1.



2) We have H;,;(2) = 1 hence
L=X((I/J)?/(I)J)?) = MI?/I? + TN I?) = NI?/I° + JI).

This implies 1? = I3 + JI + (ab) for some a,b € I, a,b ¢ J. By Nakayama we get
I? = JI + (ab) and the conclusion follows by easy induction on n.

3) We have al C I? = I.J + (ab), hence

ICH+(J:a)nICI.

4) and 5) By part 2) and for every n > 2 we have epimorphisms
/gt % mrgm o

and
(L))" ()T S (L))" (1)) — 0.

From this we see that v, < wv,—1 and Hy ;(n + 1) < Hyj;(n). This proves 4) and 5).
6) We have seen that

1= \I?/I3+JI) = \IJ + (ab) /I + I]).

This implies abm C I? + I.J which proves the assertion for n = 1.
If n > 2, we have by induction

a"dbm Ca(a" 'bm) Ca(I" 4 g C P2 4 g1

T Letx € IN(J:a),x ¢ IN(J:I). Then ar € JNI? = JI and there exists y € I such
that zy ¢ J. Since zy € I%, the element 7y € I?/JI is non zero and is killed by a because
axy € JI?. This proves that I?/JI % I3/JI? — 0 is not injective, so that the conclusion
follows. O

We remark that by 1) of the above lemma we have e(I) —h — A(A/I) > 1, so that, by
(??), K > 2. Further, if I is stretched, then by 5) we have
Ppy(2) = MAJT) + hz + 22 4 -+ 4 2¢D=hH=MAD,

Hence K is the least integer such that I*! C J. Summing up, for a stretched ideal I, the
integer K = e(I) — h+ 1 — A(A/I) satisfies the conditions

K>2 IXg¢Jg I1I5'CJ v =K-1.

10



We also remark that since 5+ C J, then I5*! C J N I? = JI. One cannot improve this
result since Sally in [?] gave an example of a stretched ideal I such that I+ ¢ JI?. We
prove in the following lemma that the condition I**! C JI7 for some j > 2 has strong
implications on the associated graded ring G.

JFrom now on, we will tacitly add to the equipment of a given stretched ideal I the
couple of integers a and b as in 2) of the above lemma.

Lemma 2.5 Let I be a stretched ideal and let j be an integer, 0 < j < K. Then we have:
i) DN J = JI + (a®b).
i) IK+Y C JI7 if and only if I" N J = JI™ for every n < j.

Proof. i) We have IX*1 N J = IK+! hence, if j = K, the conclusion follows by Lemma
72, 2). We use descending induction on j. It is sufficient to prove I’*'N.J C JI7 + (D),
because the other inclusion follows by assumption.

Let j < K; by Lemma ??, 2), we have I['*! = JI7 + (a’b) so that

PHng=JrF 4 (a?b) N J.
Since j +1 < K, I’*! ¢ J, hence a’b ¢ J so that
(a’b) N J C (a?bm) N J.
By Lemma ??, 6), and using the inductive assumption, we finally get
FHNJgCcJr + (PP +JrynJ =J0 + (P20 J) =

= JI + JP 4 (a5b) = TP + (a®D).

ii) By part i) and for every n < j, we have I"t1N.J = JI" + (a®b). Now, if [K+1 C JIJ,
we get I"M1NJ C JI" + JI7 = JI" for every n < j. Conversely, if /TN J = JI’, we get

Itlcgnprtt c .
O

The next result determines which stretched ideals have Cohen-Macaulay associated
graded rings. It extends one of the main result in [?].

Theorem 2.6 Let I be a stretched ideal. Then G is Cohen-Macaulay if and only if

[K+1 — J[K

11



Proof. By [?], G is Cohen-Macaulay if and only if I"*! N J = JI™ for every n > 0, hence
if G is Cohen-Macaulay then I+ N .J = JIX and the conclusion follows since I5+! C J.

Conversely, by ii) of the above lemma, we certainly have I"*' N J = JI" for every
n < K. The same conclusion holds also if n > K because, in that case, 1"t = JI™. O

Let now add one more numerical invariant to a stretched ideal I, namely its Cohen-
Macaulay type.
Let I be a stretched ideal; we set

T(I):=A((J:I)NI/J)

and we say that 7(I) is the Cohen-Macaulay type of I. If the ideal I is clear from the
contest, we will simply write 7 instead of 7(I).

If I = m, then it is well known that the integer A\ ((J: m)Nm/J) = AX((J : m)/J) does
not depend on the ideal J generated by a maximal superficial sequence for m and is called
the Cohen-Macaulay type of A. This explains the above terminology.

As in the case of the maximal ideal (see [?]), the associated graded ring of a stretched
ideal I, whose Cohen-Macaulay type is not too big, has a small amount of good behaviour
in that IX+1 C JI%

Theorem 2.7 Let I be a stretched ideal. If T < h+1— X\(A/I), then
vp=K—2 and I’°NJ=JI%
In particular I+t C JI2.

Proof. We have
vg = ANI3/JI?) = NI3/JNI3) + XJNI3/JI?) = NIP+ J/J) + AN(JNT13/JI?).
Let us consider the chain
BJ=J+@*)>J+ @) > - >J+ X)) > J+ (afb) =

This chain has K — 2 steps and all the inclusions are strict because if a’b € J + (a'T'b)
for some 2 < i < K — 1, then a’b € J so that I'tt = JI* + (aib) CJwithi+1< K, a
contradiction.

Hence we have A\(I® + J/J) > K — 2 so that

vy > K =24+ NJNIP)JI?)

and the two assertions of the theorem will follow if we prove that vo < K —2, or equivalently
v < V1.

12



By Lemma ?7?, 3), we have I = (b)+ (J : a) N[ and by Lemma ??, 7), we need to prove
IN(J:a)#AINn(J:1).
Let us assume by contradiction that I N (J :a) =IN(J:I). We have a chain
JCJ:DHNnIC(J: NI+ (b)=1.

Hence, since

MI/J)=e—-XA/I)=h+ K —1,
if we prove
AM(J:-DNI+B)/(J:1)NI) <K -2+ MA/I), (8)

we get h+K—1<7+K—-24+X(A/I), a contradiction to the assumption 7 < h+1—A(A/I).

In order to prove (??), we consider the following chain of length K — 1 connecting
(J:I)NnIto (J:I)NT+ (b).

(J:DNI=J:DHnI+ @ )yc(J:HnI+ @ 2)C...
e C(J:D)NT+(ab) C(J:I)NI+ (b).
By Lemma ??, 6), and for every n > 1, we have

ma™b C 1"+ J = (a" M)+ J

so that
M :D)NI+(ab)/(J:I)NI)+ (a® b)) < K —2.

On the other hand
(J:I)ﬂ[—l—(ab):(J:I)ﬂ]+[2:(J:I)ﬁf—i—I((J:I)ﬂI—i-(b)):(J:I)ﬂ[+b[,

so that
(D)+((J:-DNIL)/ I+ (J:I)NI)~(b)/(bI+(J:I)N(b)).

This implies
A+ (T D)NI) /(I + (J:I)NI) < A((b)/bI) < A(A/I).

This proves (??7) and the theorem. O

The above result extends Theorem 2.5. in [?] where the conclusion follows in the case
I=mand7=1.

The following example shows that, in the above theorem, the condition 7 < h-+1—\(A/T)
cannot be relaxed.
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Example 2.8 Let A = k [[t7,t8,t13,t19,t25]] and let I =m. Then d =1, h =4, K = 3,
7=4and z :=t" is a superficial element of m. We have Pa(z) = (1+4z+ 23 +2°)/(1 — 2)
and Py/ya(2) = (1442 + 2% + 2) /(1 — 2) so that m is stretched and vy =2 = K — 1.

We remark that if / = m then h > A(A/I) = 1, so that h — A\(A/I) + 1 is always a
positive integer. But for an m—primary ideal I this integer can be negative. In this case
one could expect that vs is as small as possible, namely vo = K — 2. The following examples
show that we can have both v9 > K — 2 and vy = K — 2.

Example 2.9 Let
A=k [T, 65,612,418 118]]
and let I = (t7,#%,!3). It is easy to check that I is stretched with J = (t7), K = 3,
hi(z) =3+2z+ 23+ 2% Hence h=2 < A(A/I) =3, 15 =2=K — 1.
On the other hand, if we consider in A the m-primary ideal I = (¢7,¢%,¢®), then I is
stretched with J = (t7), K = 3, hy(z) = 34+ 224+ 22 + 2% h = 2 < A(A/I) = 3 and
v=1=K-—2.

We end this section by proving that stretched ideals I such that I+ C JI? have H;(2)
completely determined by h and A(A/I). We need the following lemma.

Lemma 2.10 Let I be an m—primary ideal and J be an ideal generated by a mazimal
superficial sequence (x1,...,xq) for I. Given a positive integer I, let us assume that I"T1 N
J = JI" for everyn <. Then

hi(z) = hyyy(2) mod(z!1).

Proof.  We prove the assertion by induction on d = dim A, the case d = 0 beeing trivial.

Let d > 1 and put  := 21, I = I/rA and J = J/xA. We have dim A/xA = d — 1 and
"' T =TT for every n < l. By the inductive assumption the h—polynomials of I and

1/J ~1/J coincide in degree n < [. Hence it is enough to prove that the h—polynomials of
I and T coincide modulo (2/*1). Since 1"t N.J = JI™ for every n < I, it follows by [?] that

I"'NzA = 2™ for every n <I.
By an extension of a well known result of Singh, for every n we have
n
Hi(n) = Hp(j) = Hr(n) + NI z/T7).
§=0
Therefore for every n <, we get Hjl(n) = Hj(n) which implies

hf(z) h[(z)
(1-2)7 (1-2)

mod(z!1).

14



Thus hy(z) = hy(z) mod(z!"1), as desired. O
Corollary 2.11 Let I be a stretched ideal.
a) If IKT1 C JI' for some | < K, then hi(z) = M(A/I) +hz + 2%+ --- + 2! mod (2!*1).

b) If I+ C JI?, then Hy(2) = (“SYYAN(A/I) + hd + 1.

Proof. For the first assertion, we remark that, by Lemma ??, we have I"t' N J = JI"

for every n < [. Therefore, by Lemma 77, we get h;(z) = hy/;(z) modulo 21, Since by

Lemma ??, 5), we have hj;;(z) = A(A/I) + hz + 2> 4+ --- + 2%, the conclusion follows.
We prove b). By a) we have hj(z) = MA/I) + hz + 22 mod(z®) . The assertion

follows by an easy computation of the coefficient of 22 in the power series Pr(z) = (]1”_ (ZZ))d =

(MA/I) +hz+ 22 +--+) (ijo (‘”jf*l)zj). O

This corollary extends Corollary 2.6 in [?].

3 Stretched ideals I with /5! C Jr&-!

In this section we are dealing with stretched ideals I such that I5+1 C JI~1 We first
prove that the depth of the associated graded ring of such ideals is at least d — 1. This is a
consequence of a deep result essentially contained in [?] (see Proposition 3.5 and Proposition
3.6) but concretely formulated in a series of subsequent papers (see [?], [?], [?], [?])-

Proposition 3.1 Let I be a stretched ideal. We have
a) [T C JIE—1 «—= \IK/JIE-1) =1.

b) If 5+ C JIE=L then depth (G) > d—1 and hi(z) = AM(A/I)+hz+22 4+ 2871428
for some s > K.

Proof. For the first assertion, if A\(I%/JI%~1) = 1, then mI® C JI*~! and in particular
5+ C JI%=1, Conversely, if I5+1 C JI®~1 then by Lemma ??, 6), we get a*~'b m C
TEFY 4 8= = JI8=1 Since I = JIX=1 + (a®~'b) and I¥ ¢ J, the assertion follows.

We prove now b). Let I5*+1 C JI¥~1; by Corollary 7?7 we have hy(z) = A(A/I) + hz +
224+ 25" mod(2¥) and by Lemma ?? we have I"t'N.J = JI" for every n < K —1.
Further by a) we have A(I®/JI*~1) = 1. Then, by [?] Theorem 3.2., we get depth(G) >
d—1and hy(z) = AN(A/I) + hz+ 22 4+ - - - + 2K~ 4 2% for some integer s > K. O
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In vew of the above result and in order to complete the description of the Hilbert series
of a stretched ideal I such that IX*! C JI*~! we may reduce the problem to the one-
dimensional case and need to look for a good upper bound of the reduction number s of
the given stretched ideal I. It will be crucial to compute the numerical invariants related to
the Ratliff-Rush filtration of I. We recall that we have put

a; = NII/T), p; = NI ali), wv; = NI+ jal))

where z is a superficial element of I such that I? NzA = xI and Hp/za(2) = 1. We recall
also that we have put K :=e(I) —h+1— A(A/I).

Proposition 3.2 Let d =1 and let I be a stretched ideal such that I"t1 C oI5~ Then
a)aj=s—K forj=2,..., K.

b)
s—1—a; if j=1
pi=K—1J if 2<j<K-1
0 if i>K.
c) [+ = g[i 4 [7+ for j > 2.
Proof. By (??) and Proposition ??, b), we have
vy =e(I)—Hrn)=e(I)— (MA/I)+h+n—-1)=K —n
ifn<K-—1and
vp=e(l)— (MNA/)+h+K—-2)=1

HK-1<n<s-—1.

Hence, if we put j = 2 and t = s — 2 in Proposition 77, we get as > vs_1 —v1 +s—2 =
1-(K-1)+s—-2=s—K.

On the other hand, by Lemma ??, one has I"t!' Nz A = 2™ for n < K — 1, so that the
following sequence is exact for every n < K —1:

0— ﬁ/[" = ﬁﬁ/}n—&-l — m/xﬁ—l-[n""l — 0.

This implies s — K < ag < --- < ag. Hence, by using (??) and (?7?), we get

T
=
|
|

S

s—1 K-1
Zvj:Zvj—i—s—Kg v+ ag = pj < Pj = vy
J=0 J=0 ' /

J=0 j=0

s

<
Il
o
<
Il
o
v
v
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It follows that pg = -+ = ps—1 = 0 and ax = s — K, which gives ag = --- = ax = s — K.
By using the above exact sequences, this implies I"+! = zI7 + " for every n > 1. Hence
a) and c) follow. Finally b) easily follows by (??) with a direct computation. O

Using the above result and with the assumption that I = I, , we can get an upper bound
of the reduction number s of I which does not depend anymore on I2.

ProEosition 3.3 Let d = 1 and let I be a stretched ideal such that T+ C xI5—1 and
I=1. Then
s<K-2+\((zA: I*)NI/zA).

Proof. By Lemma ??, for every n > 1 we have I"*! = 21" 4 (a™b) with a,b € I, a,b ¢ zA.
By using the above proposition we get I3 = xI2 + I3. This implies al?2 C I3 C x12 + (a?b),
hence, since 12 C I = I, we have

RC(P+(A:a)nI=1+(zA:a)nI) CI2+ ((zA: I2)N1).
This and Proposition ?? imply
s < 1+>\((:UA:I)HI+I~2/:UA) < 1+)\((xA:IQ)ﬂI+I~2/xA) <
<1+ A((zA:IP)NI+1*/zA) =
=1+ A ((zA: P)NI+P)(zA:I*)NI)+ A ((zA: *)NI/zA).

We will prove that A ((zA : I*) NI+ 1*/(zA: I*)N1) = K —3, which gives the conclusion.

Since I5*! C xA, we have a®~2b € (zA: I?) N 1. Let us consider the chain
(xA:I)NT+T1*=(xA: )N I+ (ab) D (xA: )N T+ (a*h) D--- D

S(xA:I)NT+ (a®720) = (zA: PN 1.

This has K — 3 steps and all the inclusions are strict since I ¢ xA. Moreover, by Lemma
??,6), we have

ma”b - In+2 I - zA + (an+1b) C (:L’A . 12) NI+ (a"“b).
Hence A ((a:A cPYNI4+17/(zA: 1*)N I) = K — 3 and the conclusion follows. O

The following example show that the bound given in Proposition 77 is sharp.
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Example 3.4 Let
A=Ek[[t" 5] ~ k[ X,V,2]] /(X* - YZ,Y® - Z?)

and let I = m = (z,y, z) be the maximal ideal of A. Then (A, m) is Gorenstein of dimension
one, h=2 e(m)=7=h+5and m =m. It is clear that x is a superficial element and m is
stretched with K = 5. Moreover m? = zm + (y?) and m® C am? since y% = 212 € zm*.

It is easy to check that A\((zA : m?)/zA) =3, h(z) = 14+ 22 + 22 + 23 + 2* + 25 and
hence s = 6 = K — 2+ A((z4 : m?)/zA).

Notice that this is an example of a Gorenstein ring with a stretched ideal m such that
m&HE C JmE—1 but its associated graded ring G is not Cohen-Macaulay.

We remark that, using the Cohen-Macaulay type of the stretched ideal I, the bound of
Proposition 77 can be rewritten as

s<K—-2+17+M@zA: I*)NI/(xzA:]1)).

In the case K = 3 and by completely different methods, we can get free of the nasty term
M(xA : I*)NI/(zA: I)) in the above inequality. We will show that s <7+ K —1 =7+ 2.
We need first a result which is a consequence of the following easy lemma proved in [?],
Lemma 1.4.

Lemma 3.5 Let L = (x1,...,2y), J and I be ideals of the local ring (A, m). Let us assume
that there exist elements a,x € I such that

alL CxL+ J.
Then there exists o € xI~1 such that
a’ —oceJr' L.

Corollary 3.6 Let L = (x1,...,x,) and I be ideals of the local ring (A,m). If a,x are
elements in I such that
al C xL + zI?,

then
’n [(x]2 +1IL):a] C xIVT2 ot

Proof. By the above lemma we can find o € xI°~! such that a” — o € 2l : L. Let
te I*N[(zI* + IL) : a ; then we may write at = zr+s wherer € I? and s € ILNI?. Since
s € IL, we have (a¥ —o)s € xI""2 hence aVs € xI"2 because os € (zIV"1)I3 = zIV+2.
Hence a’T't = a%(at) = a’xr + a’s € xI1"*2, as wanted. 0
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Theorem 3.7 Letd =1 and let I be a stretched ideal such that K = 3, I=1andI* C zI?.
Then s < 17+ 2.

Proof. By Lemma 77, 2), there exist elements a,b € I, a,b ¢ xA, such that, for every
n>1, I""! = xI"+(a"b). By Proposition ??, a), we have ag = )\(I~2/12) = s—3, so that we
can write 12 = 2 + (Y1, ..,ys—3) where y; ¢ I? for every i. By Proposition ??, ¢), we have
B=gl24+]3 = xl~2+(a2b), hence for every 7 = 1,...,5—3, we have ay; € I3 = :UI~2—|—(a2b).
This implies that there exist elements z1,. .., zs_3 € I? such that a(y; — z) € xI2. If we let
L:=(y1—21,...,Ys—3 — 2s—3), we get 12 = % + L with a C o2 = x(L + I?) and we may
apply Corollary 77 to get

"n [(3312 +1L):a| C zI*7 1 et
We claim that L C (zA:I)N1.

Clearly L C I? C I =1 We prove that L C (zA : I). By Proposition 7?7, b), we have
p2 = AN(I3/xI?) =1 hence, if LT ¢ zA, then

I3=2I2+ LI =zI?+ LI

This implies ab € I3 C I3 = 212 + LI so that ab € 12 N [(xI? + IL) : a] C xI*t:a*2.
The claim follows since this implies [® =z s—1 a contradiction to the minimality of s.

The claim implies that (zA: I)N I+ 1?2 = (zA: 1) N1+ I?, hence, by Proposition ?7?,
we get

s§1+/\((a:A:I)ﬂI+f2/a:A> — 147+ M(@A: )N+ 12/(zA: )N 1)

But we have I? = zI + (ab) and by Lemma ??, 6), mab C I3 + I C (zA : I). Hence
M(xA: YNNI+ I?/(xA: )N 1) < 1, as required.
a

Example 3.8 Let us consider the local ring A = k [[t6, t7,t16, t”]] and its maximal ideal
m. This is a one-dimensional Cohen-Macaulay local ring such that h = 3 and = = t% is a
superficial element for m. It is easy to see that m is a stretched ideal of multiplicity h + 3,
that is K = 3. Further m®> = zm + (32) and y* € zm? so that m* C zm?. We can easily
check that s = 7 4 2 thus proving that the bound given above is sharp.

The following example shows that in the above theorem we cannot delete the assumption
I=1.

Example 3.9 We consider
A=Fk[[t°,t°¢]] and I= (£,
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Then I is a stretched m—primary ideal of the one dimensional ring A. In fact ¢ is a
superficial element with 12N (%) = t°I and Hipj5y(2) = 1. Moreover e(I) = h+ A(A/I) +2
so that K =3, but I*: (t5)3 % I so that I # 1.

In this case I* C 512 7 = 1, but h;(z) = 2+ 2z + 22 + z*. This example shows also that
the Sally’s theorem does not extend to m-primary ideals.

The above theorem gives non trivial examples of m-primary ideals such that G is Cohen-
Macaulay.

Example 3.10 Let A = k[[X,Y,Z]]/(XZ —YZ,XZ + Y3 - Z%) = k[[x,y,2]] and let
I = (x,y). Then I is stretched with K =3, J = 24 and 7 = 1. We have I* C zI?, hence
hi(z) =24 z + 22 + 23 so that G is Cohen-Macaulay.

We move now to the higher dimensional case. Since we need to use the above results
where the assumption I = I is needed and we do not know whether this condition is
preserved modulo a superficial element, we are going to use the stronger condition that I
is integrally closed.

Theorem 3.11 Let I be an integrally closed stretched ideal such that IT1 C JI¥=1. Then
depth(G) > d — 1 and hi(z) = MA/I) + hz + 22 + - + 2571 4+ 25 for some integer s with
Kgng—erA((J:I?)mI/J).

Proof. By Proposition ?? we have depth(G) > d—1 and hy(z) = M(A/I) +hz+ 2%+ +
2514 2% for some s > K. We prove by induction on d that s < K —2+ X ((J: I*)N1/J).
If d = 1 we can apply Proposition ?? to get the conclusion after remarking that, by [?],
integrally closed implies I = I.Letd > 2; again by [?] we may assume that there exists x € J
such that x is superficial for I and I := I/zA is integrally closed in the Cohen-Macaulay
local ring A := A/xA which has dimension d — 1. Further it is clear that I is stretched with
respect to J := J/xA, h(I) = h(I) and e(I) = e(I) so that e(I) — h(I) — M(A/I) +1 =
e(I) —h(I) — M(A/I) +1 = K. We also have (I)X*! C J(I)®~1 so that, by induction, the
degree of the h-polynomial h7(z) of I is bounded above by K —2+ A ((j : 72) N T/j) . We
have depth(G) > d — 1 > 0 so that h7(z) = h7(z). The conclusion follows since

(7: 1) 1/7 = Hom (A/T",1/7) = Hom(A/1* + A, 1/.T) =

=0y (IP+ad)=(J:(IP+zA)NI/J=(J:I*)nI/J.
O

By using exactly the same argument as above we can prove the following result in the
special case K = 3.
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Theorem 3.12 Let I be an integrally closed stretched ideal such that K =3 and I* C JI?.
Then depth (G) > d — 1 and hy(z) = M(A/I) + hz + 2% + z° for some integer s such that
3<s<T+2

Proof. The proof is exactly the same as in the preceding theorem. One needs only to use
Theorem 77 instead of Proposition 7?7 for the initial case d = 1, and the following equality

T(I) = X(Hom(A/J,I]J)) = X (Hom(A/J,I/J)) =7(I)

instead of the corresponding one used for the conclusion. O

We remark that the above result does not extend to the case K > 4. Namely we have
seen in example 77 that one can have s = 7 4+ K.
However we ask the following question.

Problem 3.13 Let I be an integrally closed stretched ideal such that I*+1 C xI®—1. Is it
true that
s<7t+ K7

We end the paper with the following result which can be considered as the true extension
to the m-primary case of the Sally’theorem. It shows that, under suitable assumptions, an
integrally closed m-primary ideal I with K = 3 is necessarily stretched and verifies I* C JI?,
so that, by using the above theorem, we can prove that G is Cohen-Macaulay.

Corollary 3.14 Let I be an integrally closed m-primary ideal such that K = 3 and h >
MNA/I). If for some ideal J generated by a mazimal superficial sequence in I we have

A(J:I)nI/J)=1, then G is Cohen-Macaulay and

A/I)+hz+ 22+ 23
(1-2z)4

Pi(z) =

Proof. We know by [?] that for every ideal J generated by a maximal superficial sequence in
I we have [N J = I.J. Hence, if we let I := I/.J, by Lemma ?7 we have Hy(1) = h. We first
prove that [ is stretched. It is clear that the h-polynomial of T is either A\(A/I)+hz+ 2%+ 23

or M(A/I) + hz + 222%. In the second case, we have /\(72/73) =2 and I? C J so that
P =rP+yP+J=1*+J/JC(J:I)nI}J,

a contradiction to the assumption A ((J : 1) N I/J) = 1. Hence H7(2) = 1 and [ is stretched
with 7 = 1.

Since h > A(A/I) we have 7 = 1 < h+ 1 — A(A/I) so that by Theorem ?? we get
I* C JI?. We can apply the above theorem to get hy(z) = M(A/I) + hz + 22 + 23; since the
h-polynomial of I coincides with that of I, the associated graded ring G is Cohen-Macaulay,
as desired. O
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